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Abstract

Proximal Policy Optimization (PPO) is one of the lead-
ing algorithms in reinforcement learning, designed to
optimize policy updates while maintaining stability.
However, in complex environments a critical trade-off
between bias and variance emerges. Parameter λ in
Generalized Advantage Estimate (GAE) plays a crucial
role in managing this trade-off, controlling the balance
between future and immediate rewards. In this paper,
we propose a dynamic adjustment method for parame-
ter λ, based on changes in value loss during training.
This adaptive approach enables the model to adjust
with respect to variations in the learning process and
achieve a better balance between bias and variance. Be-
sides, a policy update delay is introduced to enhance the
control of updates in PPO, helping to mitigate large
fluctuations in the policy and increase the algorithm’s
stability. Our experiments show that dynamic λ adjust-
ment significantly improves performance, particularly
in complex environments. These results suggest that
adaptive λ adjustment is a flexible and effective way to
enhance the performance of PPO in various reinforce-
ment learning tasks, especially in challenging and high-
dimensional environments, in our case OpenAI Gym
Environment Ant-v4 and in DeepMind Control Envi-
ronment quadrupped walk.

Keywords: Proximal Policy Optimization, General-
ized Advantage Estimate, and Bias-Variance Trade-Off

1 Introduction

Reinforcement Learning (RL) has emerged as a power-
ful tool for solving complex decision-making problems
through interaction with environment. Policy gradient
methods, [8], which adjust policy parameters to maxi-
mize expected rewards, are particularly effective in con-
tinuous action spaces, [2, 3, 4, 5].
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To address the limitations of traditional policy gra-
dient methods, PPO was introduced as an efficient and
robust alternative. PPO improves upon earlier methods
by using a clipping mechanism in policy updates, which
prevents drastic changes and enhances learning stabil-
ity. This approach, combined with its computational
simplicity, has made PPO one of the most widely used
RL algorithms today.

Additionally, techniques such as GAE have been de-
veloped to address the bias-variance trade-off in RL,
further improving the performance of policy gradient
algorithms.

In this paper, we first explain PPO and GAE, then
we propose a dynamic adjustment of λ parameter in
GAE to achieve a better balance between bias and vari-
ance, which is crucial for the stability of the learning
process. Also a policy update delay is added to PPO
to enhance the control of updates, helping to increase
the algorithm’s stability. Finally, we evaluate our ap-
proach by conducting experiments in two popular envi-
ronments, OpenAI Gym and DeepMind, to demonstrate
the benefits of dynamic parameter tuning on RL perfor-
mance.

2 Related work

Policy gradient methods optimize policies by directly
adjusting parameters to maximize expected rewards.
Instead of learning a value function, they update the
policy in the direction that increases the probability
of rewarding actions. This approach is effective for
stochastic policies and continuous action spaces, using
function approximators like neural networks.

Proximal Policy Optimization PPO, [7], Algorithm 1,
is a type of policy gradient method designed to optimize
policies in reinforcement learning while maintaining sta-
bility and preventing large, destructive policy updates.

The central idea of PPO is to maximize a “surrogate
objective function”, allowing multiple epochs of opti-
mization on the same batch of data. Unlike standard
policy gradient methods, PPO introduces a mechanism
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to limit the extent to which the policy is updated, us-
ing either a clipping method or a Kullback-Leibler (KL)
penalty.

The surrogate objective in PPO is represented as:

Lclip(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
, (1)

where πθ(at|st) is the new policy, πθold(at|st) is the old
policy, Ât is the advantage estimate, Êt is the empirical
expectation over time-steps.

This objective aims to encourage the policy to in-
crease the probability of actions that are deemed ad-
vantageous by Ât.

PPO avoids large, destabilizing policy updates by
clipping the probability ratio πθ(at|st)

πθold (at|st) . The clipped
objective is:

Lclip(θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
,

(2)
where:

• rt(θ) =
πθ(at|st)

πθold (at|st) is the probability ratio.

• ϵ is the clipping hyper-parameter, typically set by a
number in the interval [0.1, 0.3]. The clip function
ensures that if the probability ratio, rt(θ), deviates
too far from 1 (either below 1 − ϵ or above 1 +
ϵ), it gets clipped. This mechanism prevents the
policy from changing too drastically in one update,
thereby stabilizing training.

• rt(θ)Ât is the normal policy gradient.

• clip(rt(θ), 1− ϵ, 1 + ϵ)Ât limits the update size.

• The use of the min function ensures that the ob-
jective is only reduced when the change would lead
to an excessively large update, keeping the training
stable. This combination of clipping and multi-
ple mini-batch updates leads to efficient and robust
policy learning, striking a balance between perfor-
mance and stability.

Generalized Advantage Estimate. The Ât is calcu-
lated using GAE, [6], which helps balance the bias-
variance trade-off in RL. GAE adds flexibility to the
way future rewards are accounted for in policy updates.
The advantage is calculated using:

Ât =

∞∑
l=0

(γλ)
l
δVt+1. (3)

Algorithm 1 PPO, [7]
1: Initialize θ for policy network
2: for each iteration do
3: for actor = 1, 2, . . . , N do
4: Run policy πθold for T timesteps
5: Compute advantage estimates Â1, . . . , ÂT

6: end for
7: Optimize surrogate L wrt θ, with K epochs and

minibatch size M ≤ NT
8: θold ← θ
9: end for

where γ is the discount factor, which controls the weight
given to future rewards, λ is a hyper-parameter, which
adjusts the balance between bias and variance, δt repre-
sents the Temporal Difference (TD) error, which mea-
sures the difference between the value of a state and
predicted value of the next state. The TD error is cal-
culated as:

δt = rt + γV (st+1)− V (st), (4)

where:

• rt is the reward at time step t.

• V (st) is the value estimate for the current state.

• V (st+1) is the value estimate for the next state.

The structure of GAE is similar to TD(λ), a method
used for value function estimation. However, TD(λ)
focuses on estimating the value function, while GAE
is designed to estimate the advantage function, which
helps in policy optimization.

Parameter λ plays a crucial role in managing the bias-
variance trade-off in PPO:

• High λ values (close to 1): This setting puts
more weight on future rewards, reducing bias but
increasing variance. In this case, the advantage es-
timate sums many future TD errors.

Ât ≈
∞∑
l=0

γlδt+1 (5)

• Low λ values (close to 0): This setting focuses
more on immediate rewards, reducing variance but
increasing bias. In this case, the advantage esti-
mate mainly reflects the current TD error.

Ât ≈ δt (6)

The parameters γ and λ both help in managing the bias-
variance trade-off when working with an approximate
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value function. However, they serve distinct purposes
and are optimal in different value ranges. The discount
factor γ mainly influences the scaling of the value func-
tion V π, and operates independently of λ. Setting γ < 1
introduces bias in the policy gradient estimate, regard-
less of how accurate the value function is. In contrast,
λ < 1 result in bias only if the value function is not
accurate.

3 Proposed methods

PPO with Adaptive GAE. To enhance the perfor-
mance of PPO, we dynamically adjust λ based on
changes in value loss during training. Adjusting λ helps
the model adapt to variations in the learning process
and a better Bias-Variance trade-off.

When λ is high (close to 1), the advantage estimate,
Ât , heavily depends on future advantages. In this sce-
nario, the network relies more on predictions of future
rewards, which can introduce noise and uncertainty, es-
pecially if the critic network is not properly trained to
provide accurate value predictions.

Algorithm 2 PPO with adaptive GAE
1: Initialize vold

loss ←∞
2: Initialize total time steps T and global step ← 0
3: Initialize λ← 0.95 for GAE
4: for each iteration do
5: for each episode do ▷ Dynamically adjust λ
6: Compute value loss vloss
7: m← 0.09− (0.085 · global step/T )
8: if vloss < vold

loss then
9: λ← max(0.5, λ−m)

10: else if vloss > vold
loss then

11: λ← min(0.99, λ+m)
12: end if
13: vold

loss ← vloss
14: end for
15: end for

In the provided implementation, Algorithm 2, λ is
adaptively adjusted based on value loss:

• When value loss decreases, indicating the critic
network is becoming more accurate, λ is reduced,
which results in a lower variance. This reduces re-
liance on future advantages and focuses more on
current information, i.e., immediate TD errors.

• When value loss increases, indicating poor per-
formance of the critic network, λ is increased, lead-
ing to higher variance that can help to improve the
algorithm.

The parameter m controls the adjustment rate, ini-
tially set to 0.09 and decreased over time. Additionally,

this adjustment of λ is more intense at the beginning
and gradually decreases over time, allowing the algo-
rithm to have sufficient opportunity to test different λ
values with larger steps initially. This approach ensures
that the algorithm can explore a wider range of values
early on before refining its choices. This approach dy-
namically tunes λ, aiming to optimize GAE depending
on how well the value function is being learned, mak-
ing it more adaptive to environment’s needs. Parame-
ter λ = 0.95 has been adapted from the original PPO
paper, and parameter m is set to linear decay with re-
spect to total timestep. This leads to adaptation to
training progress, ensuring more efficient exploration in
early stages and refined updates as training stabilizes.

Policy Update Delay (PUD). The concept of delay-
ing policy updates after several updates to the critic was
introduced in Twin Delayed Deep Deterministic (TD3)
[1] to reduce approximation errors and improve learning
stability. This concept can also be applied to enhance
the control of updates in PPO, Algorithm 3, helping
to mitigate large fluctuations in the policy and increase
the algorithm’s stability. In our approach, consider-
ing the dependency of λ update on the value loss, it is
recommended to perform policy updates after several
updates to the critic to ensure higher accuracy in learn-
ing. Frequent updates to the critic networks compared
to the actor provide the critic with more opportunities
to minimize value errors effectively.

Algorithm 3 PPO with adaptive GAE and PUD
1: Initialize policy_frequency← 2
2: for each iteration do
3: for each epoch do ▷ Policy Update Delay
4: if epoch % policy_frequency == 0 then
5: Update actor policy Lactor
6: end if
7: end for
8: Update critic policy Lcritic
9: end for

Complexity Analysis. The overall complexity is pri-
marily driven by factors such as the number of parallel
environments, the number of iterations, updates, and
the storage of input data (observations), output data
(actions), and other information such as values, rewards,
and logprobs. In our approach, in addition to the previ-
ously mentioned data, the dynamic changes in λ require
storing the updated value of this parameter at each up-
date. As a result, the overall complexity of our method
remains nearly identical to PPO, and the increase in
execution time is negligible.
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Figure 1: OpenAI Gym Ant-v4 episodic return in PPO
with Adaptive GAE
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Figure 2: DeepMind quadruped-walk-v0 episodic re-
turn in PPO with Adaptive GAE

4 Results

We evaluated the proposed methods in two different
benchmarks, each with 5 seeds and compared them with
PPO as the baseline.

PPO with adaptive GAE. Results on OpenAI Gym
MuJoCo Environment, [9], as shown in Figure 1, in
four million iterations of the Ant-v4 benchmark, mean
episodic return increased from 3000 to 4500 by keep-
ing variance in a constant range. Results on DeepMind
Control Environment, [10], as shown in Figure 2, over
two million iterations of the quadruped-walk-v0 bench-
mark, mean episodic return increased from 350 to 400,
while the variance was significantly reduced.

PPO with Adaptive GAE and PUD. In OpenAI Gym
MuJoCo environment, during four million iterations of
Ant-v4 benchmark, we first introduced the policy up-
date delay to PPO. Then, we incorporated PPO with
adaptive GAE. Comparing Figure 1 and Figure 3, the
policy update delay alone was able to improve PPO (PPO
vs. PPO+PUD). However, when combined with adaptive
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Figure 3: OpenAI Gym Ant-v4 episodic return in PPO
with Adaptive GAE and PUD
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Figure 4: DeepMind quadruped-walk-v0 episodic re-
turn in PPO with Adaptive GAE and PUD

GAE, as shown in Figure 3, mean episodic return in-
creased from 4500 to 5400 while maintaining the same
variance (PPO + PUD vs. PPO + Adaptive GAE + PUD).
The combination of these two methods resulted in ben-
eficial outcomes.

In DeepMind Control environment, during two mil-
lion iterations of quadruped-walk-v0 benchmark, we
first introduced policy update delay to PPO (PPO +
PUD). Then, we took adaptive GAE into account (PPO
+ PUD + Adaptive GAE). Comparing Figure 2 and Fig-
ure 4, the policy update delay alone resulted in weaker
performance compared to PPO (PPO vs. PPO + PUD).
However, when combined with adaptive GAE, it leads
to clearly improved results over PPO (PPO vs. PPO +
Adaptive GAE + PUD). Additionally, both the variance
and mean episodic return increased; so the combination
of both methods does not show significant progress com-
pared to PPO with adaptive GAE (PPO + Adaptive
GAE vs. PPO + Adaptive GAE + PUD). Therefore, pol-
icy update delay can, in some cases, lead to improved
performance.
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5 Conclusion

Based on the provided explanations and the experi-
mental results, we conclude that adaptive adjustment
of λ, instead of using a fixed value, can be beneficial
and achieve a better balance between bias and variance.
This is because, in the early stages of training, when the
environment is not properly trained, assigning a higher
weight to future rewards may introduce greater uncer-
tainty. The idea of policy update delay, was also in-
troduced and added to the proposed method in order
to reduce approximation errors. Rapid policy updates
in PPO, which typically result from frequent updates,
can lead to issues such as instability. As observed, de-
layed updates in policy alone can be beneficial in certain
benchmarks (e.g., Ant-v4). Additionally, due to the de-
pendence of λ on value loss, PUD with adaptive GAE
in some cases can help achieve more stable learning and
better results.
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