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PhIGT: Physics Informed Graph Transformer for Planar Cable-Driven
Parallel Robot Forward Kinematics
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Abstract

Neural networks (NNs) have made significant progress
in recent years, achieving impressive results in a wide
range of applications. However, many of these mod-
els do not take advantage of the rich physical knowl-
edge available from prior studies and domain exper-
tise, especially in the field of robotics. To bridge this
gap, Physics-Informed Neural Networks (PINNs) have
emerged as a powerful framework, enabling the integra-
tion of physics information with various types of neu-
ral networks. This approach has gained popularity due
to its ability to leverage physical laws, improve gener-
alization, and enhance learning efficiency. In this pa-
per, we propose a Physics-Informed Graph Transformer
Network (PhIGT) for implementation on a cable-driven
parallel robot to solve the forward kinematics problem.
By incorporating physical constraints into the graph-
based transformer architecture, our approach aims to
achieve more accurate and physically consistent predic-
tions for the cable robot’s end-effector positions, offering
a novel solution that effectively combines data-driven
learning with domain-specific physics.

Keywords: Physics Informed Neural Network, Graph
Neural Network, Transformer, Forward Kinematics,
Planar Cable-Driven Parallel Robot

1 Introduction

Parallel robots, particularly cable-driven parallel robots
(CDPRs), are well known for their straightforward in-
verse kinematics solutions [9]. However, solving the for-
ward kinematics for these systems is often significantly
more challenging, as analytical solutions rarely exist.
This difficulty arises from the nonlinearities and com-
plexities inherent in the robot’s structure. As a result,
obtaining accurate measurements of the end-effector’s
position and orientation within the workspace typically
requires the use of expensive equipment, such as motion
capture systems, which may not be feasible in many
practical applications due to their high cost.

To address this challenge, we propose a novel ap-
proach: a physics-informed graph transformer network
for solving the forward kinematics of a planar CDPRs.
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In this approach, the end-effector and the fixed anchors
of the robot are represented as graph nodes, while the
cables connecting them are treated as graph edges. The
model leverages the measured joint variables (i.e., cable
lengths) and incorporates physical constraints derived
from the robot’s structure to estimate the workspace
variables, including the end-effector’s position.

By embedding the robot’s kinematic model into the
graph structure, the proposed method effectively cap-
tures the physical relationships between the cables
and the end-effector, enabling accurate estimation of
the end-effector’s position. This data-driven, physics-
informed framework provides a cost-effective alternative
to traditional sensor-based approaches, allowing for re-
liable forward kinematics estimation without the need
for expensive external sensors. Although this study fo-
cuses on a specific planar CDPR, the proposed solution
is easily generalizable to other types of robots.

The remainder of the paper is organized as follows:
Section 2 reviews related works; Section 3 elaborates on
the robot’s structure and both the inverse and forward
kinematics of the planar CDPR; Section 4 describes
the network architecture and components; Section 5 ex-
plains the experiment details; and Section 6 discusses
the results.

2 Related Works

Many works have focused on using deep learning algo-
rithms to improve various aspects of parallel robots[21,
7, 22]. Cable-driven parallel robots (CDPRs), a type of
parallel robot, are known for their high payload capac-
ity and flexibility[2], making them suitable for appli-
cations such as camera motion control, rehabilitation,
and material handling. Deep learning techniques have
been used to enhance modeling, control, and trajectory
planning for CDPRs[19, 8, 1], showing promising im-
provements over traditional methods.

Recently, Graph Neural Networks (GNNs)[5] have
gained attention for their ability to model relational
data, which is particularly useful for robotic systems
like CDPRs where capturing the relationships between
different components is crucial. =GNNs have been
applied in robotic control and dynamics prediction,
showing promising results in handling complex system
dependencies[11, 13]. Additionally, Transformers[16]



have also been adapted to robotics to process com-
plex data effectively[6, 14]. Combining GNNs with
transformers[17] has shown potential in representing
complex systems more effectively, offering new oppor-
tunities for improving the control and efficiency of
CDPRs]3].

Physics-informed learning has gained attention for its
ability to integrate physical constraints and prior system
knowledge directly into machine learning models[12],
which helps achieve better robustness and generaliza-
tion. This approach has shown notable success in appli-
cations involving dynamic systems and control[4, 18].
More recently, there have been efforts to combine
physics-informed learning with graph transformers[20,
10], using physical laws in conjunction with graph-
based relational modeling to improve model perfor-
mance across various domains.

3 Physical Modeling

In the subsequent sections, the structure of the robot
will be explained, and the equations describing the in-
verse and forward kinematics of the robot will be de-
rived.

3.1 Robot Structure

The schematic of the robot is shown in Figure 1. The
robot consists of a rectangular frame with a height A
and width w. The end-effector, depicted at the center
of the frame, is a circular object with a radius Rp. The
global coordinate system is centered in the middle of
the frame, with its principal axes aligned parallel to the
edges of the frame.

The end-effector is connected to the frame via cables,
with each cable attached to a fixed anchor point on the
frame, denoted as A;. The length of each cable can
be controlled independently, allowing the end-effector
to move within the workspace. The angle between each
cable and the edges of the frame is denoted by «;. The
other end of each cable, denoted as L;, is connected to
the end-effector at attachment points B;, positioned at
an angle 0; relative to the center of the end-effector.

3.2 Inverse Kinematics

The inverse kinematics for the studied cable-driven par-
allel robot aims to determine the set of cable lengths L =
[L1, Lo, L3, Ly)" and their angles o = [, ag, a3, oy 7,
given a desired configuration of the end-effector in the
workspace X = [Teg, Yegs Pegl” - Here, .y and y., rep-
resent the position of the center of the end-effector in
Cartesian coordinates, and ¢4 denotes its orientation in
the global frame. For a better intuition, the end-effector
is subjected to a virtual displacement in the workspace,
and depicted in 2.
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Figure 1: Schematic of the cable-driven parallel robot.

For each cable 7, the corresponding length L; is calcu-
lated based on the positional relationship between the
anchor point A; on the fixed frame and the attachment
point B; on the end-effector. The position of B; is in-
fluenced by both the end-effector’s global position and
orientation.

The intermediate components of the ith cable length
can be described by the following relations:

Lxl = (xg - Azm) + RB COS(QSg - 91)’ (1)

Ly, = (yg — Aiy) + Rpsin(¢y — 0;), (2)

where (z4,v,) represents the global position of the cen-
ter of the end-effector, Rp is the distance between the
center of the end-effector and the attachment point B;,
and 0; is the angular position of the attachment point
B; relative to the center of the end-effector. The con-
stants A;; and A;, correspond to the fixed coordinates
of the ith cable’s anchor point in the base frame.

Once the intermediate components L,, and L,, are
determined, the length of the ith cable, L;, is computed

as:
Li= /12, + 12, (3)

This expression yields the magnitude of the ith cable
length, which ensures the attachment point B; is posi-
tioned according to the desired end-effector configura-
tion in the workspace.

Additionally, the angle a; of the cable relative to the
horizontal axis can be derived using the two-dimensional
inverse tangent function:

a; = atan2(Ly,, Ly, ), (4)
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Figure 2: The illustration of virtually displaced end-
effector

where «; provides information regarding the direction
of the cable relative to the fixed base frame.

By applying these equations for all four cables, the full
set of cable lengths L = [Ly, Lo, L3, L4]T can be deter-
mined, allowing the system to achieve the desired pose
of the end-effector, represented by X = [Zcg, Yegs Peg” -
The inverse kinematics formulation presented here en-
sures that the physical constraints of the system are re-
spected, as each cable length is uniquely defined based
on the end-effector’s position and orientation. This is
noteworthy to mention although the equations for cable
angles are derived, they are not easy to measure. Hence,
only the cable lengths would be considered for further
calculations.

3.3 Forward Kinematics

The forward kinematics of the cable-driven parallel
robot involves determining the configuration of the end-
effector, denoted as X = [T¢y, Yegs Pegl T, from the given
cable lengths L = [Ly, Lo, L3, L4]T. Unlike inverse kine-
matics, the forward kinematics problem does not gen-
erally admit closed-form analytical solutions due to its
nonlinear nature. However, a reformulation of the for-
ward kinematics equations is suggested in [15], which
leverages the physical relationship between the cable
lengths, the end-effector position, and its orientation.
The squared length of each cable L? can be expressed
in terms of the coordinates of the end-effector’s center
of gravity (z¢g,Yeq) and its orientation ¢4 as follows:
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L? = ((2eg — Aia) + Rp cos(¢eg — 0;))?
+ ((969 - Aiy) + Rp Sin(¢€g - 91‘))2

By expanding and rearranging terms, the equation
can be expressed as:

(5)

L — (A7, 4+ A3 + Ry) = a2+ 42+ Biteg + Vil (6)
where:

Bi =2 (RB COS(¢cg - 01) - Azz)
vi = 2 (Rpsin(¢eg — 0;) — Aiy)

This system results in four equations (one for each
cable) but with only two unknowns, x4 and yeg, as ¢eg
is assumed to be known. To determine the position of
the end-effector, we can construct an overdetermined
system of linear equations from Equation 6:

pi = 22, + Y2, + Biteg + Vileg (7)

where:

Next, by eliminating the nonlinear terms involving
2

xg, and ygg, we obtain a linear system as shown below:
Poa—=P1 y2—m B2 — H1
Bz — P2 73— Teg| _ | M3 — H2 (8)
Ba— B3 va—73| |Yeg M4 — 13
Ba—P1 ya—m fa = i1

This system represents four equations with two un-
knowns, x., and y.,. Since this system is overdeter-
mined, the solution can be obtained by solving it using
a least-squares optimization approach. By minimizing
the error between the left-hand and right-hand sides of
Equation 8, the optimal values for z., and y., can be
found. This approach provides an effective means of
solving the forward kinematics problem in the absence
of an analytical solution.

Thus, given the cable lengths L = [Ly, Lo, Lz, L4]T
and the orientation ¢4, the position of the end-effector
can be determined by solving this overdetermined sys-
tem, yielding the values of ., and yg.

This intuition is used in our work, the network would
estimate the ¢., given the cable lengths such that the
solving the this least square problem would result in
least square error between the actual and estimated end
effector position and orientation.

4 Neural Network Architecture

This study aims to integrate essential physical con-
straints into the network as an inductive bias to mini-
mize the need for estimation. To achieve this, a network



is designed that directly takes cable lengths as input
and outputs only the end-effector orientation, ¢.q4. The
estimated orientation, combined with cable lengths and
equation 8, is used to calculate the end-effector position.
The discrepancy between the predicted and actual posi-
tions is used as an additional physical constraint for re-
fining orientation estimation. In essence, the predicted
orientation should not only be accurate but also lead to
a precise end-effector position prediction. The network
architecture and its components will be detailed in the
following sections.

4.1 Input Encoding

The input to the graph transformer network consists
of the measured cable lengths and the robot’s struc-
tural parameters. These are encoded as node and edge
features within the graph. As previously described, the
frame anchors and the end-effector are modeled as graph
nodes. The node features represent the positions and
orientations of the nodes. For the anchor nodes, these
values are constant and directly derived from the robot’s
structure parameters. In contrast, the end-effector’s po-
sition and orientation are unknown, so a learnable em-
bedding is employed for these features.

The edge features represent the messages passed be-
tween the nodes. For the kinematic model, these mes-
sages are defined as the Euclidean distances between the
nodes. While the distances between anchor nodes re-
main constant, the distances between the anchor nodes
and the end-effector nodes are represented by the mea-
sured cable lengths.

It is important to highlight that while the node and
edge features in this specific application are mostly
static (due to the fixed anchor positions), the proposed
framework is versatile enough to handle more complex
cases, such as dynamic structures with moving anchors.
This flexibility allows the method to generalize to a
broader range of kinematic and structural problems.

4.2 Graph Transformer Block

The Graph Transformer Block is a crucial component of
the proposed network architecture, designed to capture
complex interactions within the graph representation of
the robot’s kinematic structure. This block leverages
self-attention mechanisms to model the dependencies
between nodes and edges, enabling the network to learn
rich representations of the system’s dynamics.

The operation of the Graph Transformer Block can
be summarized as follows:

Graph Attention Layer The Graph Attention Layer
computes attention scores to effectively aggregate infor-
mation from both node and edge features.

Node Feature Projections: The node features
N € RVXdn are projected into query, key, and value
representations using linear transformations:

Q"=NW?, K'=NW}, V'=NWI (9)

where Wy, Wy, Wi € R %4 are learned weight
matrices, and d is the dimensionality of the transformed
features.

Edge Feature Projections: Similarly, the edge fea-
tures E € RV*NXde are projected:

Q°=EW:, K°=EW;, V°=EWS, (10)

with Wg, Wi, W e Réexd,

Attention Mechanism: The attention scores are
computed using the scaled dot-product attention for
both nodes and edges.

For node features:

n n\T
A" = softmax (CZ(K)) , (11)
Vd

and the updated node representations are:

N = A"V™, (12)
For edge features:
A° = softmax (QQ(K)> , (13)
Vd

where © denotes element-wise multiplication, and the
updated edge representations are:

E = A°Ve. (14)
Interaction between Nodes and Edges: The up-
dated edge features E’ are used to enhance the node

features by incorporating information about the rela-
tionships between nodes:

ij

N
N" =" AN/, (15)
j=1

where Af; represents the attention score between
node ¢ and node j via the edge connecting them.

Residual Connections and Layer Normalization To
facilitate training and improve convergence, residual
connections are employed along with layer normaliza-
tion.
Node Features Update:
N = LayerNorm (N + N"). (16)
Edge Features Update:

E = LayerNorm (E + E'). (17)
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Feedforward Networks Position-wise feedforward net-
works are applied to the node and edge features to intro-
duce non-linearity and enhance the model’s representa-
tional capacity.

Node Feedforward Network:

Nfinal — N 4+ FFN(N), (18)

where FFN consists of two linear transformations
with a non-linear activation function (e.g., LeakyReLU)
in between:

FFN(N) = 0 (NW7{ + b}) W3 + bJ. (19)
Edge Feedforward Network:

Efinal — E + FFN(E), (20)

with similar definitions for the feedforward network
parameters. The Graph Transformer Block effectively
models the interactions between the robot’s components
by attending over both node and edge features. By inte-
grating self-attention mechanisms within a graph-based
framework, the block captures the complex dependen-
cies inherent in the robot’s kinematics. The use of resid-
ual connections and layer normalization stabilizes the
training process and enables the construction of deeper
networks.

This approach enhances the network’s ability to learn
physics-informed representations, as it inherently re-
spects the structural relationships and constraints of the
robot’s configuration, leading to more accurate and in-
terpretable modeling of the system.

4.3 Output Decoder

The network estimates the end-effector orientation dscg.
To determine the end-effector position, given this ori-
entation estimate and the cable lengths, a kinematic
decoder layer is employed at the network output. This
layer leverages the physical relationships between the
cable lengths, the positions of the anchors, and the ori-
entation of the end-effector, as formulated in Equation
8. Specifically, the decoder reconstructs the end-effector
position by solving an overdetermined system of linear
equations. This system is derived from geometric con-
straints, where the differences between the cable lengths
and the end-effector position are mapped into a least-
squares problem. The decoder computes the x.4 and ¥4
coordinates using the anchor positions, cable lengths,
and orientation.

By incorporating these physical relations directly into
the model, the network becomes physics-informed, as it
inherently respects the robot’s geometric and kinematic
constraints, improving the model’s interpretability and
alignment with the underlying physical system.
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5 Experiment

To train the network, a set of configurations X =
[Tegs Yegs Peg)” is randomly sampled from a uniform dis-
tribution X ~ Unif over the workspace, forming the
target variable. The input to the network is the set of
cable lengths L, obtained by solving the inverse kine-
matics of the robot.

To simulate real-world conditions, an additive zero-
mean Gaussian noise with a standard deviation of 0.005
is applied to the cable lengths, introducing measure-
ment noise. The network is optimized using a stochas-
tic gradient descent (SGD) optimizer with a momen-
tum factor of 0.996. The objective function to minimize
is mean squared error. The learning rate is scheduled
using a cosine decay strategy, starting from 0.001 and
gradually decreasing to zero by the final iteration. The
optimization process runs for 10,000 iterations.

6 Results

To evaluate the generalization capability of the trained
model, a circular trajectory was designed and used as
the test case. The results of the model’s predictions are
depicted in Figure 3. As seen in the figure, the predicted
end-effector positions closely match the ground truth
values across the entire trajectory, demonstrating strong
alignment between the model’s outputs and the target
positions.

A small degree of fluctuation is observed in the pre-
dictions, which can be attributed to the additive mea-
surement noise applied to the cable lengths during both
training and testing. This noise was introduced to sim-
ulate realistic sensor inaccuracies and improve the ro-
bustness of the model to imperfect data.

Despite the presence of this noise, the model main-
tains high accuracy, with a mean squared error (MSE)
of less than 0.002 millimeters over the entire trajectory.
This low MSE indicates that the model has effectively
learned the underlying kinematics of the cable-driven
parallel robot and is capable of producing precise pre-
dictions, even in the presence of noise.

The results confirm that the proposed physics-
informed graph transformer network generalizes well to
unseen trajectories and demonstrates a high level of pre-
dictive accuracy for the inverse kinematics task.
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