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Abstract

The objective of this paper is to present two effective
computational schemes for solving Lane-Emden-type
equations using an artificial neural network. The spec-
ified neural network consists of three layers: the in-
put layer, the hidden layer, and the output layer. For
the activation functions of the hidden layer, we con-
sider Chebyshev polynomials of the second kind. Also,
we consider another activation function for the output
layer. Finally, for train, this neural network, collocation
method and classical optimization method are applied.
The applicability and accuracy of the expressed tech-
nique are investigated in three illustrative examples.

Keywords: Neural network, Lane-Emden equation,
and Chebyshev polynomials of second kind

1 Introduction

The theory of singular boundary value problems has
become an important area of investigation in the past
three decades (see [1, 2, 3, 4, 5]). One of the equa-
tions describing this type is the Lane-Emden equa-
tion. In astrophysics, the Lane-Emden equation rep-
resents a dimensionless version of Poisson’s equation,
which describes the gravitational potential of a New-
tonian fluid that is both self-gravitating and spheri-
cally symmetric, with polytropic characteristics. This
equation is named after the astrophysicists Jonathan
Homer Lane and Robert Emden. Nonlinear singular ini-
tial value problems (IVPs) in ordinary differential equa-
tions (ODEs) indeed arise in various scientific and engi-
neering applications, reflecting complex physical phe-
nomena. In particular, these ODEs can exhibit be-
haviors that are sensitive to initial conditions and can
exhibit singularities that challenge traditional analyti-
cal and numerical methods. Some examples of appli-
cations includethe polytropic theory of stars, thermo-
dynamics, energy transport models, stellar structure,
radioactive cooling, and modeling clusters of galaxies.
These problems are often difficult to solve analytically
due to the nonlinearity and singular points, thus neces-
sitating numerical methods and advanced mathemat-
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ical techniques for analysis and solution. Numerical
techniques like adomian decomposition methods [6], hy-
brid functions[7], Lagrangian interpolation method[8],
Jacobi matrix method[9] and etc. can be particularly
useful for obtaining approximate solutions in these con-
texts. Typically, the Lane-Emden type equations are
expressed as:

u’ () + g + G(z,u(t)) = H(x), (1)

with the initial conditions

’

u(0) = ap, u (0) =ay, (2)

where, H(z) and G(z,u(x)) are some given functions
and (3, aqg,a; are real constants. If we consider =
2,G(z,u(z)) = u"(z),H(z) =0and ap = 1, a3 = 0
the standard Lane—Emden equation obtain as follow:

"

u' (z) + %u/(aﬁ) +u™(z) =0, (3)

Also, if consider 8 = 2, G(z, u(z)) = exp(u(z)), H(z) =
0 and ag = 0, a3 = 0 the isothermal gas spheres equa-
tion obtain as follow:

"

u” (x) + gu () + exp(u(z)) =0, (4)

Moreover, if we consider f = 2,G(z,u(z)) =
sinh(u(z)), H(x) = 0 and ag = 1, a3 = 0, one of the
Lane-Emden type equations will be obtain as:

"

u (z)+ %ul (z) + sinh(u(x)) =0, (5)

There are several alternative analytical and numerical
techniques for obtaining solutions of Lane—Emden-type
nonlinear equations. Some of these methods are the
Homotopy analysis method [10], Bernstein polynomials
method [11], Legendre wavelets method[12], B-spline ex-
pansion method [13] and etc. Machine learning, partic-
ularly deep learning methods that utilize Neural Net-
works (NNs), are extensively applied to address chal-
lenges across diverse fields such as computer vision,
language processing, game theory, and more ([14] and
related references). Today, the use of artificial intelli-
gence to solve different types of differential equations
has become increasingly common. Malek and Beidokhti



Shekari in [15] developed a hybrid scheme that com-
bines artificial neural networks (ANNs) with optimiza-
tion methods to solve higher-order differential equa-
tions. Jianyu et al. [16] applied a radial basis neural
network for the numerical solution of the elliptical par-
tial differential equation. Masood et al. [17] designed a
mexican hat wavelets-based neural network for solving
the nonlinear Bratu-type equation.

Given their capacity for universal approximation,
neural networks can be an effective method for finding
approximate solutions to various initial and boundary
value problems. In addition, using neural networks to
approximate solutions can offer several advantages over
traditional numerical methods. For example, we can
compute a differential function without the need for
extensive formal numerical calculations, and the com-
putational complexity remains constant regardless of
the number of sample points. At any arbitrary point,
even between the training points, the solution can be
obtained seamlessly. Conversely, the neural network
method can effectively tackle both linear and nonlinear
ordinary and partial differential equations. Addition-
ally, some researchers have utilized the ANN method
to find approximate solutions to the Lane-Emden equa-
tion such as Legendre neural network [18], Chebyshev
neural network [19], Neural network method based on
local search algorithm[20], Fractional orthogonal neural
network [21].

2 Chebyshev polynomials of second kind.

The Chebyshev polynomials are regarded as one of the
most useful families of polynomials in numerical anal-
ysis. They are particularly well-suited for applications
such as polynomial approximation, integral and differ-
ential equations, and spectral methods for solving par-
tial differential equations [22, 23]. Chebyshev polyno-
mials of the second kind of degree m are defined on the
interval [—1, 1] as follows [24]:

_ sin(m +1)0

Un(z) = : (6)

sin 0
where 6 = arccos(z). This expression shows that the
Chebyshev polynomials of the second kind can be rep-
resented using the sine function, emphasizing their pe-
riodic properties and connections to trigonometric func-
tions. These polynomials can also be recursively gener-
ated starting with Uy(z) = 1, Uy(z) = 2z and using the
recurrence relation:

Un () = 22U —1(z) — Up—2(z), m=2,3,..., (7)

The polynomials U,,(z) exhibit a variety of properties,
including orthogonality with respect to the weight func-
tion v/1 — 22 on the interval [—1, 1]. To use the Cheby-
shev polynomials of the second kind on the interval

(0,1), we can apply a change of variable. This involves
shifting the variable z from the interval [—1,1] to (0,1)
using the transformation 22 — 1. Thus, the shifted sec-
ond kind Chebyshev polynomial U*(z) defined on the
interval (0,1) can be expressed as:

Ur(z) = (da —2)U}_1(x) = U} _o(x), m=2,3,...,

(8)
with the initial conditions

Ug(z) =1, Ui (a) = 4z — 2.

The analytical expression for the shifted Chebyshev
polynomials U} (z) of degree m is provided by

X _mH 1ok (mA R
Um(m)_kz:ok(_l) " mri—mieg® @

The shifted second kind of Chebyshev polynomials
U} (x) retain the orthogonality property over the in-
terval (0, 1) with respect to the weight function w(z) =

vV — x?

/0 Uy (2)Ur(z)w(x) = Amn, (10)

1
where and d,,, is the Kronecker function and \ = §7r.

3 Structure of Chebyshev polynomials neural net-
work

For solving the presented problem in Equations (1)-(2),
we consider the second kind of Chebyshev polynomials
neural network (SCPNN). The structure of SCPNN has
three layers.

e In a typical neural network architecture, the first
layer is often referred to as the input layer which
consists of a single node labeled x. This node has
a set of data represented as {x1,z2,..., 25}, where
h is number of data.

e The second layer is the hidden layer of the network,
in which we choose a class of orthogonal functions
as activation function (AF). We have used Cheby-
shev polynomials of the second kind as activation
functions.

e The third layer is the network’s output layer. Its
input is a linear combination of Chebyshev polyno-
mials of the second kind from the second layer, and
its output is the result of applying an activation
function to the input.

Therefore, the output of the SCPNN with input data x
and parameter B is as

N(z, B) = AF(R), (11)
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R represents a linear combination of Chebyshev poly-
nomials of the second kind and is represented as

M
R=> "bUj(z) = B'll(x), (12)

k=0
where B = [by,b1,...,bn] and TII(z) =
U (z),Us (x),...,Ur(x)]. Training data sets
{z1,22,...,2n} can be selected through various

methods, including equidistant points and the roots of
M + 1 th the Legendre polynomial, among others. In
this paper, we consider the roots of M + 1th Chebyshev
polynomials of the second kind as the training data set.

4 Application of the methods to the Lane—-Emden
equation

This section discusses the application of Chebyshev
polynomials of the second kind in a neural network
framework to obtain numerical solutions for the gen-
eral form of the Lane-Emden equation, as outlined in
equations (1) and (2). At first, to address solving the
problem (1) and (2) by the numerical approximation
methods consider [25]

u(z) ~ i(z) = ap + ayx + 22N (z, B), (13)

It seems that 4(x) satisfies certain initial conditions.
Also the approximate solution should be satisfied in
Equation (1). So, we obtain

Res(z,B) =4 (z)+ gﬁl(x) + Gz, a(t)) — H(x). (14)

4.1 Approachl: Chebyshev polynomials of the sec-
ond kind neural network-collocation (SCPNN-
C)

In this technique, we collocate the Equation (14) at M +
1 zeros of Chebyshev polynomials of the second kind as:

Res(xg, B) =1 () + By (20) + Gz, i) — H(2),

Ty
(15)
where ¢ = 1,2, ..., M +1. Now by using fsolve command
in Maple software we can obtain B.

4.2 Approach2: Chebyshev polynomials of the sec-
ond kind neural network-optimization (SCPNN-
0)

In this method collocate Equation (14) in every training

point {z1,za,...,2xs}. So, we obtain

Res(an, B) = 0 (o0) + 2 (00) +Glan, o))~ H ().
(16)
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Case 3: if n =5, the exact solution is u(x) = <1 + x> .

Then we obtain the followin optimization relation as:
1
* . 2
B :mBl)ni_X;Res (xj,B). (17)
=

Moreover, Equation (17) can be formed as an uncon-
strained parametric optimization problem. In an un-
constrained optimization problem, we aim to find the
parameters (which may also be variables dependent on
another parameter) that minimize or maximize an ob-
jective function without any restrictions or constraints
on those parameters. Now, we should implement the
structured approach to solving for the vector B that
minimizes the objective function B*. The necessary
conditions for this aim are as

oB*

—, i=1,...,h 1
abz7 1 Y 7h (8)

Now, for finding the unknown vector B we should apply
Newton’s iterative approach. After that the approxima-
tion solution in Equation (13) can be obtained.

5 Numerical examples
In this section, we consider three problems in (3)-(5).
For these problems, we consider the active function

—— for approach 1 and R for approach 2.
1+ | R\ PP Pp

Example 1 In the first example, we consider the stan-
dard Lane—Emden equation as introduced in FEquation
(3). The initial condition for this problem as

w(0) =ag =1 and u (0) = a; = 0.

In Equation (3), n is a constant. In this ezample, we
consider three cases:

Case 1: if n =0, the exact solution is u(z) =1 — %,
sin(z)

Case 2: if n =1, the ezact solution is u(x) = ,

=

3

Figure 1 displays the graph of absolute error for both
methods with M = 2 for Case 1. Also, we report
the maximum absolute error with M = 2 by applying
Method 1 and 2 for Case 2. Finally, the graph of abso-
lute error with M = 2 by using Method 1 and M = 3
by utilizing Method 2 for Case 3 is displayed in Figure
2.

Example 2 The equation for an isothermal gas sphere,
is expressed as follows:

"

2 ’
u (x) + ;u (z) + eul(®) — 0, (19)
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Figure 1: The absolute errors for M = 2 for approach 1 Figure 2: The absolute errors for M = 2 for approach
(above) and approach 2 (below) for case 1 in Example 1 (above) and M = 3 for approach 2 (below) for case 3
1. in Example 1.
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Table 1: Maximum absolute error with M = 2 for case

2 in Example 1.

t  Approach 1 Approach 2
0.1 1.01x107% 7.36x10""
02 1.88x107% 1.36x10°6
0.3 858x1077 6.20x 1077
04 2.05x107% 1.48 x1076
0.5 5.54x107% 4.02x107°
0.6 7.74x107% 5.61 x 1076
0.7 7.00x107% 5.07 x 1076
0.8 3.00x107% 218 x 1076
09 2.05x1076 1.47x 1076

where u(0) = 0 and u' (0) = 0 can be consider for initial
conditions. The solution of Equation (19) was approzi-
mated in [26] as

—z2 x4

@)=
=T T s x4l 21 x 6

12228 4087210
81 x 8 495 x 10!

Table 2: Comparison of the residual error for various
values of M by using Method 2 of Example 2.

t  Our Method Method in [25]

M=2 M=3 M=41 k=1,M=4
0.1 433x107* 757x107% 5.84 x1076 5.0 x 107°
0.2 342x107* 7.21x107° 4.49x10°° 8.5 x 107°
0.3 581x107* 284x107° 3.79x10°6 2.3 x107°
04 410x107* 291x10"° 543 x10°° 4.5 x107°
0.5 0 5.12 x 107> 0 6.9 x 10°°
0.6 4.41x107* 266 x107° 5.60x 1076 4.1 x107°
0.7 6.73x107* 237x107° 4.04x10°6 1.9 x 1075
0.8 427x107* 550x107° 4.95x 1076 6.5 x 107°
0.9 5.84x107* 527x107% 6.65x 1076 3.5x107°

The graph of compression with an exact and approxi-
mate solution and absolute error for M = 2 by utilizing
Method 1 displayed in Figure 3. Also, In Table 2, we re-
port the residual error for various values of M by using
Method 2.

Example 3 Now, for the last example, we consider an-
other type of the Lane—Emden equation as follows:

"

u () + %ul(:ﬁ) + sinhu(z) =0, (20)

where, u(0) =1, u'(0) = 0.
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Figure 3: The compression with exact and approxi-
mate solution (above) and absolute errors (below) for
approach 1 for M = 2 for Example 2.
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Figure 4: The compression with exact and approxi-
mate solution (above) and absolute errors (below) for
approach 1 for M = 2 for Example 3.

We consider the solution of this problem similar to [26]
as

12¢ © 7 480e2” 30240¢3
61e® — 104e® 4 104e? — 61 4

26127360e*

The graph of compression between exact and approx-

imate solution (above) and absolute error (below) for
M = 2 by utilizing Approach 1 is displayed in Figure
4. Moreover, we can see the absolute error for various
numbers of M and using Method 2 in Table 3.

Table 3: Maximum absolute error by using Method 2
with different values of M of Example 3.

t M =2 M=3 M =4

0.1 3.53x107% 3.62x1077 2.68x 108
0.2 6.53x107% 216x1077 3.45x 108
0.3 3.00x107% 6.02x10"7 1.10x 107
0.4 6.89x107% 1.33x107% 841 x10~8
0.5 1.86x107° 1.37x107% 1.57x10°8
0.6 2.59x1075 7.37x1077 3.61x10°8
0.7 234x1075 9.98x107% 2.22x 1077
0.8 9.87x107% 5.23x1077 1.04x 106
09 844x107% 1.43x107% 3.16 x 10

6 Discussion

In this paper, we proposed two numerical techniques
that utilize Chebyshev polynomials of the second kind
in a neural network to obtain approximate solutions
for various forms of the Lane-Emden equation. This
network is made up of three layers: the input layer,
the hidden layer, and the output layer. For the acti-

vation function, we consider AF¥ = —— AF = R
1+ |R|

and Chebyshev polynomials of the second kind. Ul-
timately, the collocation method is used to train this
neural network in the first method, while the classical
optimization method is applied in the second method.
Numerical results show that these two approaches have
the potential to become efficient algorithms for deter-
mining numerical solutions of Lane-Emden equations.
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