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Abstract

In this work, we propose a machine learning approach
utilizing Least Squares Support Vector Regression (LS-
SVR) to numerically solve Fredholm integral equations.
The suggested approach utilizes a combination of LS-
SVR alongside orthonormal Bernoulli polynomials, as
well as Galerkin and collocation spectral techniques. An
optimization problem is derived and converted into the
solution of a system of algebraic equations. Finally, we
present two numerical results that demonstrate the ef-
ficiency of the proposed method.

Keywords: Least squares support vector machines,
Fredholm integral equation, and orthonormal Bernoulli
polynomials.

1 Introduction

Integral equations have recently found applications in
machine learning techniques. Many problems in physics
and engineering can be modeled using integral equa-
tions. For example, they are used in the prediction
of multiple crack propagations in elastic media [1],
heat transfer problems [2], option pricing [3], and etc.
Integro-differential equations are typically challenging
to solve analytically, creating a need for efficient ap-
proximate solutions [4, 5]. Various approaches have
been suggested for addressing integro-differential equa-
tions; nonetheless, many of these methods have con-
straints, such as unrealistic premises, linear approxi-
mations, slow convergence rates, and results that di-
verge. Among these methods are Adomain decom-
position method[6], Runge-Kutta [7], Wavelet-Galerkin
method[8], least squares [9] and Chebyshev polynomial
[10].

In recent years, machine learning algorithms have
gained significant popularity across various fields,
such as pattern recognition, recommendation systems,
healthcare, theorem proving, cybersecurity, and finan-
cial services. These methods aim to uncover the un-
derlying structure of a problem by analyzing incoming
data. The use of machine learning techniques has now

∗Department of Applied Mathematics, Faculty of Mathemat-
ical Sciences, University of Kashan, Kashan 87317-53153, Iran,
m.pourbabaee@kashanu.ac.ir

expanded into both engineering and mathematical chal-
lenges. These techniques have been designed for the nu-
merical simulation of differential and integral equations
[11, 12, 13]. Each year, new techniques are introduced
that surpass the current leading algorithms. Some of
these represent minor improvements or combinations of
existing methods, while others are entirely new devel-
opments that result in impressive advancements. They
have also been utilized as a means to approximate the
solutions of ordinary differential equations (ODEs), par-
tial differential equations (PDEs), and integral equa-
tions (IEs). Support Vector Machines (SVMs) are a
robust methodology for addressing pattern recognition
and function estimation problems [14, 15]. SVM al-
gorithms [16], introduced by Vapnik within the frame-
work of statistical learning theory, map input data into
a high-dimensional feature space using a feature map.
These algorithms are capable of achieving a global opti-
mum by solving a convex quadratic programming prob-
lem. SVMs are models designed for supervised learning
tasks, such as classification and regression, introduced
by Cortes et al. [17]. They include a notable innova-
tion that emphasizes improving the model’s generaliza-
tion capabilities rather than solely focusing on minimiz-
ing empirical risk on training inputs. The least squares
support vector machine (LS-SVM) is a modification of
the traditional SVM formulation for machine learning
tasks, originally proposed by Suykens and Vandewalle in
1999. The LS-SVM replaces the inequality constraints
of the SVM’s primal model with equality constraints.
Additionally, the loss function associated with the slack
variables is changed to a squared error loss function.
These modifications allow the dual problem to be ex-
pressed as a system of linear equations, which can be
more computationally efficient to solve than a quadratic
programming problem in certain cases. To name a few,
Mall et al. [18] presented Chebyshev neural networks
for solving Lane–Emden type equations. Golbabai et
al. [19] utilized radial basis function networks to address
second-kind integral equations. A least-squares support
vector regression scheme was developed by Parand et
al. [12] for solving Fredholm integral equations. Lu
et al. [20] addressed higher-order nonlinear ordinary
differential equations using a method based on least-
squares support vector machines. In addition, LS-SVM
algorithms have been successfully applied to solving dif-

431



The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

ferential equations [21, 22], differential algebraic equa-
tions [24, 23], and integral equations [25]. Ye et al.
presented an orthogonal Chebyshev kernel for SVMs in
2006. Leake et al. compared the application of connec-
tion theory using LS-SVMs in 2019. Baymani et al. de-
veloped a new technique utilizing LS-SVMs to achieve
analytical solutions for ODEs in 2016. Additionally,
Chu et al. introduced an improved method for the nu-
merical solution of LS-SVMs. In this paper, the least-
squares support vector algorithm is utilized to develop a
numerical algorithm for solving Fredholm integral equa-
tions using orthonormal Bernoulli polynomials. In this
study, we examine the integral equation involving the
unknown function y(t) [12]:

ρy(t) = g(t) + µ

∫
C

k(t,v)λ(y(v))dv, (t,v) ∈ C ⊂ Rn

(1)
where, t = (t1, t2, . . . , tn),v = (v1, v2, . . . , vn), µ is a
constant, referred to as the eigenvalue of the integral op-
erator, C is a compact set and a square-integrable kernel
of the integral equation denote by k(t,v) ∈ L2(C). If
ρ = 0, it is referred to as an integral equation of the first
kind; otherwise, it is classified as an integral equation
of the second kind. Based on the function λ(.), Equa-
tion (1) can be classified as either a linear or nonlinear
integral equation. For simplicity, we express Equation
(1) in operator form as follows:

L(y) = g, (2)

where L defined by

L(y) = ρy(t)− µ
∫
C

k(t,v)λ(y(v))dv, (3)

The main goal of this paper is to construct an efficient
learning-based method using least squares support vec-
tor machines for the numerical simulation of integral
equation (1). This method utilizes two different train-
ing approaches: Galerkin least squares support vec-
tor regression (GLS-SVR) and collocation least squares
support vector regression (CLS-SVR). We employ or-
thonormal Bernoulli polynomials as the kernel of the
network. The approach leads to an optimization prob-
lem that can be reduced to solving a system of algebraic
equations, facilitating an efficient resolution of the inte-
gral equation.

2 Preliminaries and initial definitions

In this section, we compile essential results concerning
orthogonal polynomials, numerical integration, and LS-
SVR, which will be necessary for the formulation of the
proposed method. These foundational concepts will un-
derpin the development of our learning-based approach

and ensure a thorough understanding of the mathemat-
ical tools used in the numerical simulation of the in-
tegral equation. We will first review the properties of
orthogonal polynomials, focusing on their recursive re-
lations and applications in approximation theory. Next,
we will discuss numerical integration techniques, partic-
ularly emphasizing their relevance in the context of the
proposed kernel-based methods. Finally, we will outline
the principles of least squares support vector regression,
illustrating how these principles can be applied in our
framework for solving integral equations.

2.1 Bernoulli’s Polynomial

The Bernoulli polynomials specifically defined on the
interval [0, 1] of degree n are defined by the following
generating function [26]

t

exp(t)− 1
=

∞∑
n=0

Bn
tn

n!
,

where, Bn represents the n-th Bernoulli polynomial.
These polynomials can also be expressed explicitly for
non-negative integers n using the following recursive re-
lation:

B0(t) = 1, Bn(t) =
n∑
j=0

(
n
j

)
bn−jt

n, (4)

where bj , j = 0, 1, . . . , n, are Bernoulli’s numbers. The
first few Bernoulli polynomials for n = 4 are

B0(t) = 1,

B1(t) = t− 1

2
,

B2(t) = t2 − t+
1

6
,

B3(t) = t3 − 3

2
t2 +

1

2
t,

B4(t) = t4 − 2t3 + t2 − 1

30
.

However, the name ”Bernoulli Polynomials” was coined
by J. L. Raabe in 1851. A thorough study of these
polynomials for arbitrary values of their variable was
first conducted by Leonhard Euler in 1755. In his book
”Foundations of Differential Calculus,” Euler demon-
strated that Bernoulli polynomials satisfy a finite dif-
ference relation, establishing a key connection between
these polynomials and finite difference calculus. Euler’s
work laid the groundwork for many subsequent develop-
ments in the theory and applications of Bernoulli poly-
nomials. Their significance extends beyond pure math-
ematics into various fields, including numerical analysis,
combinatorics, and number theory, where they are uti-
lized for approximations and error analysis in numerical
integration. The properties of Bernoulli’s polynomials
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Bn(t) and Bernoulli’s numbers bn are fundamental in
various areas of mathematics. Here are some key prop-
erties [27]

1. Bn(1− t) = (−1)nBn(t), n ∈ Z+,

2. B
′

n(t) = nBn−1(t), n ∈ Z+,

3. Bn(t+ 1)−Bn(t) = ntn−1, n ≥ 1,

4.
∫ 1

0
Bn(t)Bm(t)dt =

(−1)n−1
m!n!

(m+ n)!
bm+n, m, n ≥ 1,

5.
∫ 1

0
Bn(t)dt = 0, n ≥ 1,

6. b2n+1 = 0, b2n = B2n(1),

7. Bn( 1
2 ) = (21−n − 1)bn,

8. bn =
−1

1 + n

∑n−1
i=0

(
n+ 1
i

)
bi.

2.2 Orthonormal Bernoulli polynomials

Bernoulli polynomials possess many beneficial charac-
teristics; however, they do not exhibit orthogonality. In
certain numerical methods, orthogonality is especially
important. As a result, utilizing these polynomials is
generally less suitable compared to orthogonal polyno-
mials like Chebyshev and Legendre polynomials. To ad-
dress this issue, the Gram-Schmidt orthonormalization
procedure is applied to sets of Bernoulli polynomials of
varying degrees. Specifically, this is applicable on the
interval [0, 1] as noted in [28].

OB0(t) = 1,

OB1(t) =
√

3(2t− 1),

OB2(t) =
√

5(6t2 − 6t+ 1),

OB3(t) =
√

7(20t3 − 30t2 + 12t− 1),

OB4(t) = 3(70t4 − 140t3 + 90t2 − 20t+ 1).

By examining the coefficients of this polynomial, we
can identify a pattern and subsequently introduce the
shifted Orthogonal Bernoulli Polynomials (OBPs). This
leads us to the following definition.

Definition 1 The OBPs on the interval [0, 1] are de-
fined as [28, 29]

OBi(t) =
√

2i+ 1

i∑
k=0

(−1)k
(

i
k

)(
2i− k
i− k

)
ti−k,

(5)

Consequently, these polynomials meet the orthogonality
condition as outlined in [30].∫ 1

0

BPi(t)BPj(t)dt = δij , i, j = 0, 1, . . . , (6)

where δij represents the Kronecker delta function.

Remark 1 Several advantages of Bernoulli basis func-
tions include:

1. As mentioned in [31], Bernoulli basis functions pro-
vide more accurate approximations of problem so-
lutions with a fewer number of basis functions com-
pared to some other basis functions.

2. The OBPs are simple basis functions, making the
implementation of the Bernoulli operational matri-
ces method straightforward.

3. According to [32], Bernoulli polynomials have fewer
terms than shifted Legendre polynomials (SLP),
and the coefficients of individual terms in Bernoulli
polynomials are smaller than those in the SLP.

Let G = [0, 1] and g(t) be a square-integrable function
defined over G. Then, g(t) may be expressed in an OBP
series as follows [29]

g(t) =
∞∑
j=0

djOBj(t), (7)

where

dj =

∫ 1

0

g(t)OBj(t), j = 0, 1, . . . . (8)

Also, we can consider the following truncated series for
g(t) as:

g(t) =

M∑
j=0

djOBj(t). (9)

For a given positive integer V , let xj , j = 1, . . . , V be
the set of V distinct roots of Legendre polynomials of
degree V . The V -point Legendre-Gauss quadrature rule
can be employed to estimate the integral of a function
g(t) over the interval (β1, β2) as follows:

∫ β2

β1

g(t)dt ' β2 − β1
2

V∑
i=1

wig

(
β2 − β1

2
xi +

β2 + β1
2

)
,

(10)
Here wi are the weights corresponding to each root xi
of the Legendre polynomial LV (t), and the transforma-
tion adjusts the standard quadrature rule (which typi-
cally operates over the interval [−1, 1]) to the specified
interval (β1, β2). Also, we can obtain wi as following
[33]

wi =
β2 − β1

(1− x2i )(L
′
V (xi))2

(11)

This method is particularly effective for approximating
integrals of smooth functions.
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2.3 LS-SVR Formulation

LS-SVR is a regression technique based on the SVM
framework that seeks to model the relationship between
input features and target outputs. It is assumed that
the function representing the relationship between in-
put points and output points can be expressed in the
following way:

y(t) =
M∑
p=0

rpOBp(t) + ζ = RTΨ(t) + ζ, (12)

In this context, rp, p = 0, . . . ,M and ζ are the model
parameters that need to be identified, while OBp, p =
0, . . . ,M represents the nonlinear feature mapping that
transforms the input space into a higher-dimensional
feature space. Next, the goal is to find the optimal
solution in that space by reducing the difference between
the model outputs and the actual measurements [34].
To achieve this, the LS-SVM model in its primal form is
expressed as the following optimization problem [35, 36]

min
R,e

J(R, e) =
1

2
RTR+

1

2
ρeT e, (13)

subject to

yj = RTΨ(xj) + ej + ζ, j = 0, 1, . . . ,K, (14)

Here, ρ represents a positive regularization parameter,
and ej denotes the error associated with the jth input
data. The first term serves as a regularization compo-
nent, whereas the second term focuses on minimizing
training errors. The optimization problem with equal-
ity constraints (13) can be addressed using the method
of Lagrange multipliers.

L =
1

2
RTR+

1

2
ρeT e−

K∑
j=0

λj
(
RTΨ(xj) + ej + ζ − yj

)
(15)

In the LS-SVM formulation, λj (where j = 1, . . . ,K)
are the Lagrange multipliers, which may take on posi-
tive or negative values. The problem is solved by uti-
lizing Lagrange multipliers and incorporating the KKT
conditions.

3 Least squares support vector regression for Fred-
holm integral equations

In this subsection, we introduce OB-LS-SVR, a novel
hybrid method designed to solve Equation (1). Initially,
we approximate y(t) using OB polynomials as follows
[12]

y(t) ' ỹ(t) =

M∑
j=0

djOBj(t), (16)

where dj , j = 0, . . . ,M are unknown. The residual
function (ResM ) for the mentioned problem can be re-
formulated as follows:

ResM = L(ỹ(t))− g(t). (17)

By utilizing the LS-SVR method, we derive the un-
known coefficients. This leads us to the subsequent
constrained optimization problems. The technique pre-
sented here serves as an interpolation that balances
the collocation method and the least squares method
through Tikhonov regularization.

min
R,e

J(R, e) =
1

2
RTR+

1

2
ρeT e, (18)

s. t. < L(ỹ(t))− g(t),Θj >= ej , j = 0, . . . ,K.

In the provided equation, the notation < . > signifies
the inner product of two functions, K indicates the num-
ber of training points, and Θj , j = 0, . . . ,K refers to
a collection of test functions situated within the test
space for an Equation (1). Now, We will examine the
Lagrangian function related to the constrained problem
(21) as outlined below:

L =
1

2
RTR+

1

2
ρeT e−

K∑
j=0

λj (< L(ỹ(t))− g(t),Θj > −ej)

(19)
The necessary conditions for the minimum of Equation
(22) are provided by:

∂L

∂λj
= 0,

∂L

∂ej
= 0, j = 0, . . . ,K, (20)

and
∂L

∂Rj
= 0, j = 0, . . . ,M.

By solving the above equations, the unknown coeffi-
cients can be obtained. Functions Θj , known as test
functions in weighted residual methods (WRMs), are
particular types of functions that include special cases
such as the Dirac delta function, basis functions, and
others. These functions play a crucial role in formulat-
ing the weak form of differential equations by allowing
for the construction of residuals that can be minimized
or solved in various contexts.

Remark 2 By utilizing the Dirac delta function as
Θj = δ(t − tj), which has the property < y(t), δ(t −
tj) >= y(tj), we can construct a collocation model for
LS-SVR (CLS-SVR). This approach allows us to en-
force that the solution y(t) accurately fits the training
data at specific points tj effectively transforming the
problem into one of minimizing the residuals at those
collocation points. This method is particularly useful in
ensuring that the regression captures the behavior of the
underlying function at the selected points in the domain.
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So, we have

min
R,e

J(R, e) =
1

2
RTR+

1

2
ρeT e, (21)

s. t. L(ỹ(tj))− g(tj),Θj = ej , j = 0, . . . ,K.

Remark 3 If we consider Θj = Pj we get the optimiza-
tion problem name as Galerkin LS-SVR (GLS-SVR).
The optimization problem for GLS-SVR involves for-
mulating a method that combines the principles of the
Galerkin approach with least squares support vector re-
gression. In GLS-SVR, test functions are typically cho-
sen to be basis functions, and the residuals are mini-
mized in a weighted least squares sense over the entire
domain.

So, we have

min
R,e

J(R, e) =
1

2
RTR+

1

2
ρeT e, (22)

s. t. < L(ỹ(t))− g(t), Pj >= ej , j = 0, . . . ,K.

4 Numerical examples

In this section, we conduct a series of numerical ex-
periments to demonstrate the reliability and effective-
ness of the improved LS-SVR algorithms. These exper-
iments will assess the algorithms’ performance across
a range of tasks and highlight their advantages over
standard LS-SVR methods. We executed the suggested
method using Maple programming on a personal com-
puter equipped with a 2.20 GHz Core i7 processor and
8 GB of RAM.

example 1 We consider the following linear Fredholm
integral equation as the first problem [12]

y(t)−
∫ 1

0

cosh(t+ τ + π)√
t2 + τ2 + 1

y(τ)dτ = g(t). (23)

Now we have a specific function g(t) along with the exact

solution y(t) =
1√
t2 + 1

.

Table 1 denote the maximum absolute error with ρ =
1020 and M = 4, 7 for CLS-SVR and M = 5, 8 for
GLS-SVR methods. Also, the absolute error for ρ =
1020,M = 9 for CLS-SVR (above) and GLS-SVR (be-
low) display in Figure 1. Moreover, the report of CPU
time for CLS-SVR and GLS-SVR methods with various
values of M for Example 1 displayed in Table 2.

example 2 Now, we consider the second kind linear
Fredholm integral equation as [12]:

y(t)−
∫ 1

0

(t+ τ)2y(τ)dτ = g(t), (24)

we have a specific function g(t) along with the exact
solution y(t) = sin(10t).

Table 1: Maximum absolute error with ρ = 1020, for
Example 1.

t CLS-SVR GLS-SVR

M = 4 M = 7 M = 5 M = 8

0.1 2.48× 10−4 1.20× 10−7 4.94× 10−5 1.92× 10−7

0.2 8.85× 10−5 1.47× 10−6 2.27× 10−5 3.32× 10−8

0.3 1.43× 10−4 1.75× 10−6 3.96× 10−5 2.21× 10−7

0.4 1.47× 10−4 2.43× 10−7 1.09× 10−5 2.80× 10−7

0.5 4.83× 10−9 1.55× 10−6 4.22× 10−5 5.02× 10−9

0.6 1.16× 10−4 2.05× 10−7 1.06× 10−5 3.04× 10−7

0.7 8.94× 10−5 1.26× 10−6 3.76× 10−5 2.27× 10−7

0.8 4.38× 10−5 9.07× 10−7 2.13× 10−5 6.63× 10−8

0.9 9.92× 10−5 6.44× 10−8 4.67× 10−5 2.20× 10−7

Table 2: CPU time for CLS-SVR and GLS-SVR meth-
ods with various values of M for Example 1.

M = 3 M = 4 M = 7 M = 9
CLS-SVR 0.312 0.343 0.405 0.452

M = 5 M = 6 M = 7 M = 8
GLS-SVR 0.156 0.187 0.234 0.265

Table 3: Maximum absolute error with ρ = 1020 and
M = 8, 10 for Example 2.

t CLS-SVR GLS-SVR

M = 8 M = 10 M = 8 M = 10

0.1 8.17× 10−4 3.77× 10−5 8.16× 10−4 3.68× 10−5

0.2 5.13× 10−5 1.33× 10−5 5.29× 10−5 1.31× 10−5

0.3 4.61× 10−4 6.22× 10−5 4.59× 10−4 6.32× 10−5

0.4 1.51× 10−3 7.97× 10−5 1.51× 10−3 7.82× 10−5

0.5 1.35× 10−7 3.18× 10−7 2.82× 10−6 1.90× 10−6

0.6 3.28× 10−3 1.48× 10−4 3.28× 10−3 1.50× 10−4

0.7 3.11× 10−3 2.52× 10−4 3.11× 10−3 2.50× 10−4

0.8 8.80× 10−4 3.77× 10−4 8.84× 10−4 2.80× 10−4

0.9 3.96× 10−3 1.41× 10−3 3.95× 10−3 3.77× 10−4

Table 4: CPU time for CLS-SVR and GLS-SVR meth-
ods with various values of M for Example 2.

M = 7 M = 8 M = 9 M = 10
CLS-SVR 0.187 0.203 0.218 0.234
GLS-SVR 0.202 0.234 0.281 0.297
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Figure 1: Absolute errors for CLS-SVR (above) and
GLS-SVR (below) methods at M = 9 and ρ = 1020 for
Example 1.

Figure 2: Absolute errors for CLS-SVR method (above)
at M = 15, ρ = 1020 and GLS-SVR method (below) at
M = 12 and ρ = 1020 for Example 2.
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The absolute error for ρ = 1020,M = 15 for CLS-SVR
(above) and ρ = 1020,M = 12 GLS-SVR (below) dis-
play in Figure 2. Moreover, we have the report of max-
imum absolute error with ρ = 1020 and M = 8, 10
for CLS-SVR and for GLS-SVR methods in Figure 3.
Moreover, the report of CPU time for CLS-SVR and
GLS-SVR methods with various values of M for Exam-
ple 2 displayed in Table 4.

5 Discussion

In this paper, a hybrid method based on LS-SVR and
with the collocation and Galerkin methods has been
presented for solving Fredholm integral equations. For
the basis, the orthonormal Bernoulli polynomials have
been used to expand the unknown solution in finite di-
mensions. This process allows you to leverage machine
learning techniques to approximate the solution of Fred-
holm integral equations and transform the optimization
problem into a more tractable system of algebraic equa-
tions. To demonstrate the efficiency and accuracy of
our method, two examples are provided.
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