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Abstract

This paper introduces an innovative approach featur-
ing a modified fractional Physics-Informed Neural Net-
work (fPINN) that effectively tackles the challenges as-
sociated with fractional convection-diffusion problems.
These problems often pose difficulties for traditional nu-
merical methods, especially in high-dimensional spaces
or complex geometries. Numerical experiments were
conducted using a well-defined 2D benchmark example
to demonstrate the effectiveness of the proposed frame-
work. The results indicate that this framework signifi-
cantly improves the performance of radial basis function
neural networks, making them better suited for han-
dling complex fractional models.

Keywords: fractional PINN, fractional convection-
diffusion equations, weak singular solution

1 Introduction

Deep neural networks (DNNs) have made significant ad-
vancements in various fields, including computer vision,
natural language processing, and game theory. Their re-
markable capability to approximate complex functions
has led to widespread application in tackling difficult
problems in applied mathematics, particularly in solv-
ing partial differential equations (PDEs) and fractional
PDEs.

Fractional PDEs are notable for their non-local be-
havior, making them effective models for processes that
involve memory and hereditary effects. However, ob-
taining analytical solutions for fractional PDEs is often
challenging due to the complexity of special functions,
such as the Mittag-Leffler and Wright functions. Con-
sequently, various numerical methods have been devel-
oped over the years to approximate these solutions such
as finite difference, finite element, and spectral methods.
Despite their usefulness, numerically solving fractional
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PDEs presents significant challenges. The high com-
putational costs and memory requirements associated
with the non-local behavior and singularities of frac-
tional derivatives complicate the process. Traditional
numerical methods, particularly for high-dimensional
fractional PDEs, face substantial obstacles because they
depend heavily on grid discretization, mesh generation,
and the incorporation of physical laws, which increase
computational costs and complexity.

Given these limitations, deep learning approaches,
particularly physics-informed neural networks (PINNs),
have emerged as promising alternatives. PINNs, devel-
oped by Raissi et al. [5], offer a framework for solv-
ing PDEs by directly incorporating the physical laws
described by these equations into the learning process
through the loss function. The key idea is to adjust the
loss function to embed these physical laws within the
neural network, reconciling inconsistencies in data, such
as initial and boundary conditions or scattered measure-
ments, with the constraints of the governing equations.
Leveraging automatic differentiation (AD) capabilities
in deep learning, PINNs can compute partial deriva-
tives accurately, enabling them to solve PDEs and iden-
tify unknown governing parameters. In contrast, auto-
matic differentiation does not readily apply to PDEs
with non-local operators, such as fractional PDEs. To
address this difficulty, Pang et al. [4] extended PINNs
to fPINNs for solving space-time fractional advection-
diffusion equations. fPINNs innovate using a hybrid
approach that combines AD for integer-order operators
with classical techniques like finite difference methods
for fractional-order operators.

In this paper, we introduce an enhanced version of
the fractional PINNs tailored specifically for addressing
fractional convection-diffusion problems. Our approach
is complemented by an innovative neural network archi-
tecture designed to improve the performance of fPINNs
in this context.

The structure of this paper is organized as follows. In
Section 2, we provide preliminary information, includ-
ing an overview of the fractional convection-diffusion
problem. Section 3 highlights our key findings and in-
troduces the innovative framework we developed. In
Section 4, we detail our time discretization strategy.
Section 5 presents a numerical example that demon-
strates the effectiveness of our method. Finally, Sec-

427



The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

tion 6 concludes the paper with a summary of our main
findings and discusses potential future research avenues.

2 Preliminaries

We consider the following time fractional convection-
diffusion problem

Dαt u = ∆u− u+ f(x, t), (x, t) ∈ Ω× (0, T ],
u(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ],
u(x, t) = u0(x), x ∈ Ω,

(1)

on a bounded convex domain Ω ⊂ R2. In (1), ∆ = ∂2x1
+

∂2x2
and Dαt stands for the Caputo fractional derivative

of order α ∈ (0, 1), which is defined as [2]

Dαt u(·, t) =
1

Γ(1− α)

∫ t

0

(t− s)−α
∂

∂t
u(·, s) ds. (2)

As mentioned in [1], the solution u for problem (1)
demonstrates weak singular behavior at initial time. In
the upcoming sections, we will present the proposed
framework to handle problem (1), incorporating the
weak initial singularity property.

3 The modified fPINN framework

To solve the fractional convection-diffusion problem (1),
we employ a radial basis function neural network, which
uses radial basis functions as activation functions to ap-
proximate the solution. In our model, we specifically
use Gaussian radial basis functions, defined as

Rg(∥x− c∥) = e−∥x−c∥2

.

With the Gaussian function serving as the activation
function, the relationship between the input and out-
put in the RBF neural network can mathematically be
formulated as follows

ũ(x) =

m∑
i=1

wie
−∥x−ci∥2

,

Here, m indicates the total number of radial basis func-
tions (or hidden nodes), and ∥ · ∥ signifies the Euclidean
norm. The term wi represents the connection weight
from the i-th hidden unit to the output unit, while ci
denotes the center associated with the i-th node. We
define the notation λ = {wi, ci}mi=1 to include all train-
able parameters of the network. As a result, the out-
put of the network can be rewritten as uNet(x, t;λ). In
our framework, we can choose a form of the approxi-
mate solution that inherently satisfies both the initial
and boundary conditions. Specifically, we define the
approximate solution as

ũ(x, t) = t ρ(x) uNet(x, t;λ) + g(x, t),

where ρ(x) is an auxiliary function preselected to ensure
that the boundary and initial conditions are automati-
cally satisfied.
In this scenario, we specify the operator L[u(x, t)] in
the following manner, where L describes the dynamics
of the underlying fractional reaction-subdiffusion prob-
lem

L[u(x, t)] := Dαt u(x, t)−∆u(x, t) + u(x, t).

We can classify the operators that comprise L into two
distinct categories:

L := LnonAD + LAD := Dαt +∆− u.

The LAD component contains operators that can be
evaluated using automatic differentiation. Conversely,
LnonAD consists of operators that cannot be computed
through automatic differentiation. For this term, nu-
merical approximation techniques are required, which
will be discussed in greater detail later.
To effectively train our model, we delineate the loss
function with the following formalism

L(λ) =
1

|ψ|
∑

(x,t)∈ψ

(
LnonAD[ũ(x, t)] + LAD[ũ(x, t)]

− f(x, t)
)2

, (3)

wherein, |ψ| the number of training points in the train-
ing sets ψ ⊂ Ω × (0, T ]. The training process for the
proposed model in this problem involves minimizing the
loss function (3) concerning λ using the L-BFGS opti-
mizer to find the optimal parameters for the RBF net-
work.

4 Time discretization

In this section, we concentrate on discretizing the Ca-
puto fractional derivative (2) using the L1 formula [3].
While S-type formulas [7, 6] offer potential accuracy im-
provements, we opt for the L1 formula here, deferring
the examination of S-type formulas for future research.
For a positiveN , let τ = T

N , and we tk = kτ , 0 ≤ k ≤ N .
The L1 formula yields the following result:

Dαt ũ(·, tn) =
1

Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

(tn − s)−α
∂ũ

∂t
(·, s) ds

≃ 1

Γ(1− α)

n−1∑
k=0

ũ(·, tk+1)− ũ(·, tk)
τ

×
∫ tk+1

tk

(tn − s)−α ds

≃ a
(α)
0 ũ(·, tn)−

n−1∑
k=1

(a
(α)
n−k−1 − a

(α)
n−k)ũ(·, tk)

− a
(α)
n−1ũ(·, t0),
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therein a
(α)
l =

τ−α

Γ(2− α)

(
(l + 1)1−α − l1−α

)
for l ⩾ 0.

5 Numerical Results

This section aims to demonstrate the capability of the
proposed approach in solving fractional PDEs. To
achieve this, we focus on the fractional convection-
diffusion problem, presented as follows

Dαt u−∆u+ u = f(x, t), (x, t) ∈ Ω× [0, T ],
u(x, 0) = sin(πx1) sin(πx2), x ∈ Ω,
u|∂Ω = g(x, t),

In a bounded 2D rectangular domain Ω, with the exact
solution provided by

u(x, t) = tα sin(x1) sin(x2).

In the numerical experiment, we sample 50 training
points on the boundary and 150 points within the inte-
rior of the spatial domain using Latin hypercube sam-
pling to ensure a well-distributed set of points. For
spatial testing, 15×15 uniformly nodes are used on the
boundary and in the interior. In Figure 1, the distri-
bution of training and test points is presented within
the rectangular domain. The accuracy of our developed
model is evaluated by calculating the relative L2 error
between the predicted solution and the exact solution

Relative L2 error = ∥ũ(x, t)− u(x, t)∥2
∥u(x, t)∥2

,

where uNN and u correspond to the predicted and exact
solutions, respectively.

In our study, we adopt the Gaussian function as an
activation function within the modified fPINN frame-
work. This choice is intended to enhance the model’s ca-
pability to accurately capture the dynamics of solutions
for fractional PDEs. The training results, summarized
in Table 1, show the relative L2 errors for training and
testing datasets across various fractional orders α and
different temporal training nodes N . The results reveal
a consistent decline in relative L2 error with increasing
N , reflecting enhanced accuracy for training and testing
scenarios. Generally, higher fractional orders α corre-
spond to significantly lower error rates, particularly at
larger N values. In contrast, for lower fractional orders,
while the errors remain relatively stable, a noticeable in-
crease is evident at higher N . These findings underscore
the effectiveness of the Gaussian activation function in
achieving convergence and accuracy within the modi-
fied fPINN framework. Figures 2 through 4 illustrate
the performance of our model.

6 Conclusion

We have introduced a novel fPINN framework for ef-
fectively addressing fractional reaction-diffusion prob-

Table 1: The relative L2 errors of modified fPINN for
different α

α N Train: L2 error Test: L2 error
10 8.5691e-03 9.4007e-03

0.9 20 5.0781e-03 5.2961e-03
40 2.9811e-03 3.0333e-03
80 1.8270e-03 1.8407e-03
10 2.0597e-02 3.1386e-02

0.5 20 1.3174e-02 1.7935e-02
40 8.3898e-03 1.0132e-02
80 7.0808e-03 7.3436e-03
10 8.8966e-03 9.2007e-02

0.1 20 1.8379e-02 6.5814e-02
40 3.2803e-02 5.3172e-02
80 4.7975e-02 5.2555e-02

lems. This innovative framework integrates RBF neural
networks with fundamental physical laws, showcasing a
modified approach to solving fractional PDEs. Utilizing
a Gaussian basis function, we have demonstrated sub-
stantial enhancements in the context of two-dimensional
domains. However, in the future, we aim to utilize S-
type formulas for fractional derivatives to offer height-
ened flexibility and efficiency of our proposed frame-
work.
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Figure 1: Data points for training (left) and testing (right).

Figure 2: Exact solution, predicted solution, and error at final time for N = 10 and α = 0.9.

Figure 3: Exact solution, predicted solution, and error at final time for N = 10 and α = 0.5.

Figure 4: Exact solution, predicted solution, and error at final time for N = 10 and α = 0.1.
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