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Abstract

Background: Pelvic plays an important role in human
movement, and it is the foundation that provides sta-
bility during activities such as walking. An abnormal
condition of the pelvic, whether it is an abnormality
of alignment or function, requires timely treatment in-
tervention. Traditionally, pelvic examination has been
performed through static two-dimensional imaging with
very limited insight into real-time pelvic dynamics.
More specifically, IMU sensors are already very pow-
erful in acquiring all nuances of movement mechanics;
with the addition of ML techniques, they can serve as an
effective methodology for forecasting pelvic movement
patterns for different activities. Material and Methods:
The present study investigates the gait pattern of 50
female patients with SSI compared to 50 controls. Var-
ious machine learning models were applied using IMU
data collected during gait analysis in order to identify
and assess abnormalities in movement. Results: SVM
has the best accuracy in the IMU data-based classifica-
tion of pelvic movement disorders. The most relevant
features, providing separation of patients from controls
using the model, were identified pre- and post-surgery.
Conclusion: Surgical patients with pelvic malalignment
demonstrated asymmetric movements in the postoper-
ative period. IMU combined with ML techniques pro-
vided a valid method for quantification and analysis of
pelvic dynamics.
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1 Introduction

Spinal sagittal imbalance (SSI) is a complex condition
that encompasses back pain, nerve involvement, and
muscle weakness—all seriously reducing the quality of a
patient’s life. It occurs because of a change in the nat-
ural curvature of the spine in the sagittal plane, leading
to misalignment with possible postural and functional
changes [1-3]. The principal sources of pain in patients
with SSI are the ones related to the nerve compression
and muscle tensions [4].

Quantitative methods, such as the use of sensors, have
been employed to evaluate walking. In recent years,
there has been a growing application of Inertial Mea-
surement Unit (IMU) sensors in clinical settings. These
sensors can be used for gait analysis, sports movements,
performance monitoring, rehabilitation, fall detection,
and gait analysis for disease diagnosis. The goal is to
improve quality of life and reduce the risk of injury [5-7].
IMU technology allows for the measurement of move-
ments in both patients and healthy individuals, without
any spatial limitations, using these sensor devices [8].

Machine learning (ML) methods can sub-group the
gait signal and detect interesting features that help clas-
sify the gait signals [9-10]. These methods make it
possible to quickly assess complex movements, such as
walking easily. But with this new approach comes a new
problem of how to manage the large amount of walking
data generated by these technologies. ML has also been
used to analyze gait patterns related to spinal disor-
ders [11-13]. As for other ML methods, support vector
machines (SVMs) were found to always provide better
performance in terms of recognizing walking patterns
[14-16]. When analyzing patient motion, it was found
that ML techniques, especially SVM, provide significant
results in terms of classification of walking tasks and ap-
proximation of nonlinear dynamics of patient walking
[17-18].

The aim of this study is to investigate pelvic kinemat-
ics in a patient group by comparing their walking with
a control group. This is done using inertial measure-
ment unit (IMU) data and machine learning methods
to detect any gait disturbances. The main objective is



to identify and analyze the key parameters that have a
significant effect on the pelvic patterns during patient
walking.

Section 2 outlines the materials and methods, detail-
ing the procedures for data collection, pre-processing,
and preparation for training the machine learning mod-
els. Section 3 presents the training outcomes of the
supervised ML models for each sensor, along with the
statistical analysis of the most significant features. Sec-
tion 4 interprets and discusses the results from Section
3, while Section 5 summarizes the key findings from the
entire study.

2 Materials and methods

2.1 Study design and participants

This study specifically focused on female participants
to investigate pelvic changes in walking in patients with
SSI (Table 1). The reason for choosing female subjects is
because of the anatomical and physiological differences
between men and women, such as hip width, muscle
mass, spine structure, and previous articles that confirm
this distinction [19-20]. This study includes 100 partic-
ipants, including 50 female patients diagnosed with SSI
and 50 female controls. In the patient group, inclusion
criteria required a consistent diagnosis of SSI with a
vertical sagittal axis value greater than 5 cm [21-22].

Participants in the control group had no history of
spinal surgery or movement disorders that could affect
walking. All participants were screened for the absence
of cardiovascular disease, psychiatric illness, and the
use of medications that could affect motor performance.
Exclusion criteria included active wounds, swelling in
motor organs, and recent joint surgeries. Ethical ap-
proval was granted by the committee of Iran University
of Medical Sciences (IR.IUMS.REC.1403.456), and sub-
jects completed informed consent forms and screening
questionnaires.

2.2 Data Collection

Data acquisition was done using a 9-axis inertial mea-
surement unit (IMU) system (MyoMotion sensor (No-
raxon USA Inc., Scottsdale, USA)). Before the study,
the IMU sensor was calibrated according to the man-
ufacturer’s instructions to ensure the accuracy of the
measurements. Participants were trained to walk a 10-
meter track in a controlled laboratory environment. The
IMU sensor was strategically placed on the hip region
of the participant (Figure 1). The goal was to have
the participants walk at a self-selected pace that closely
resembled natural walking conditions.
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Figure 1: Sensor placement on the participants’ body
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Table 1: Information of subjects participating in the study, highlighting the demographics of patient and control

groups.

Group Age (years) Height (cm) Weight (kg) Sex (female)
Patient (n=>50) 50 £4.94 161 +£4.37 86 £6.7 female
Control (n=>50) 49 +1.48 162 +£2.3 84 +2.9 female

2.3 Data analysis

To ensure the signals are collected accurately through-
out the gait cycle, the signals received from the IMU
sensor underwent noise removal and were then divided
into units corresponding to each gait cycle. Subse-
quently, the signal from the previous step was processed
using a Butterworth low-pass filter with a cutoff fre-
quency of 6 Hz and an order of 4 [23]. This filtering
operation, depicted in Figure 2, was then implemented.
By segmenting the signals into distinct time intervals,
we were able to focus on the pertinent gait informa-
tion. This approach facilitated the isolation of individ-
ual gait cycles and allowed for the extraction of detailed
features from specific segments of the gait data [24], as
illustrated in Figure 2.

Low-Pass Filter Applied to Signal

| — original Signal
‘} — Filtered Signal

Amplitude

Figure 2: Segmentation of patient gait data from IMU
in terms of gait cycles

2.4 Feature extraction

The main features include time and frequency features
(Table 2) [25-26] calculated on all preprocessed data
from IMU sensor. These features include linear acceler-
ation, angular velocity, equivalent acceleration, equiv-
alent angular velocity, and rotation angle (pitch, yaw,
roll). The output of this section is a large number of
features that will be examined in the feature selection
section. In the feature extraction process, we have used
both parametric and non-parametric variables (Table 2)
to ensure the reliability and strength of the results and
to match different features of the data. This approach
will provide a comprehensive analysis and strengthen
the validity of the study findings [27].
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Table 2: Final features extracted from IMU data.

Frequency Feature
Fast Fourier Transform
Entropy FFT

Time Feature
Average and Median
Variance

Standard Deviation Energy FFT
Min and Max Value Average FFT
Skewness IQR FFT

Interquartile Range (IQR)
Total Energy

Mean Absolute Deviation
Root Mean Square (RMS)
Kurtosis

Lyapunov

Power Spectrum
Average Power Spectrum
Variance Power Spectrum
Entropy Power Spectrum

2.5 Feature selection

Feature selection is a crucial step in machine learning
(ML) as it helps identify the most relevant features from
a given dataset. In this study, we propose a feature se-
lection approach that utilizes Support Vector Machines
(SVM) and model validation techniques. The objective
is to determine the optimal features that significantly
enhance the predictive ability of the model. For classifi-
cation purposes, we have chosen the SVM model, while
below, we present other models for comparison. The
radial basis function (RBF) kernel is employed as it is
widely used in nonlinear classification problems.

The RBF kernel is defined based on the two input
vectors x and y as follows:

K(z,y) = exp(—|z — y|3) (1)
where,
p
o =yl = Y (i - 2 @)

In equation (1), K(x, y) represents the kernel func-
tion applied to the input vectors x and y. The exp.
represents the exponential function. ~ (gamma) is a
meta parameter that controls the width of the Gaus-
sian distribution (51 = 7) and determines the impact
of each training example on the decision boundary. A
more minor value results in a broader distribution and a
smoother decision boundary, while a larger value makes
the distribution narrower, resulting in a more localized
decision boundary. The expression (||z—y||%) represents
the squared Euclidean distance between the vectors x
and y [28].



The most important parameters of the features are
presented in Table 3. This review highlights which fea-
tures in the time series data are more significant and
warrant further attention and investigation about sen-
SOT.

2.6 Model training

The use of ML has facilitated previous research trends
in studying lower extremity variability in this specific
patient population. By harnessing the power of data-
driven analysis and ML, it becomes possible to gain
a comprehensive understanding of the subtle changes
in the lower limbs of individuals with preoperative SSI
[29]. To test the learning performance of the models,
the number of features in the dataset is reduced, and it
is then divided into two separate subsets: training data
(80% of the dataset) and test data (20% of the dataset)
[30-33]. To examine the dataset and identify the pri-
mary features, unsupervised models were utilized. Ta-
ble 4 illustrates the results of this clustering and the
accuracy of each model. These model results can aid
in selecting the appropriate clustering model and vali-
dation algorithms for analyzing movement data in the
groups under study.

Using 10-fold cross-validation, the data was divided
into separate groups for testing and training. To pre-
vent data leakage, each group was normalized individ-
ually within the range of [-1, 1]. This scaling process
aims to enhance classification accuracy. The resulting
features and labels from the training data were then
inputted into the SVM algorithm, and labeled as the
training matrix. For nonlinear classification tasks, an
SVM model with an RBF kernel is frequently chosen.
Additionally, network search is employed to identify the
best meta-parameters for improving model performance
[30].

The steps discussed in the preceding sections have
been elaborated upon. Moreover, to validate and com-
pare the outputs, various machine learning techniques,
such as LDA, k-NN (k nearest neighbors), and Naive
Bayes models, have been employed [34-36]. The sensor
is checked for all models to examine movement disor-
ders more closely. This is necessary because these indi-
viduals lack movement symmetry and exhibit abnormal
movement.

3 Results

3.1 Model selection

Different ML models were trained on the sensor sepa-
rately, and the output of the test and train data is pro-
vided in Table 5. The analysis utilized SVM, k-nearest
neighbor (k-NN), LDA, and Naive Bayes models [30].
Table 5 demonstrates that the SVM model, as indicated

by previous studies [17-18], is effective for examining
motion data and SSI patients.

According to the selected features shown in Table 3,
the models were examined, tested, and trained based
on the selected priority. One of the goals was to train
and evaluate the model using both the least and best
possible number of features while preventing overfitting.

3.2 post-surgery analysis

A detailed comparison of the developed ML models
showed that SVM consistently outperformed the others
in terms of accuracy. However, the k-NN and LDA mod-
els also performed very well, especially on datasets with
distinct walking patterns. These models were somewhat
less effective in more variable situations, where the pres-
ence of non-linear relationships made SVM more useful.
The simple Bayes model, although simple, performed
well enough on small and simplified data sets but proved
insufficient for the dimensional feature space of walking
data. This emphasizes the importance of choosing ap-
propriate models based on the specific characteristics of
the data being analyzed.

Using the results of the SVM model trained on the
data of the patients and the control group, the post-
surgery data of the patients were classified, and the
post-surgery results showed that, considering that in the
static state, the condition of the patient group was dif-
ferent from the condition of the group. The control is
similar, but they have different kinematics when walk-
ing, and 78% of patients after surgery still have the same
behavior as before surgery, and 22% have the same be-
havior as the control group (Figure 3).

Improved

22.0%

78.0%

Not Improved

Figure 3: The output of the machine learning model to
determine the condition of patients after surgery
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Table 3: Performance metrics for various methods across different datasets.

Dataset Method Accuracy Precision Recall Fl-score
Pelvic SVM 99.07% 97.70%  98.00% 98.87%
k-NN 98.95% 97.50%  98.00% 98.73%
LDA 99.00% 98.00% 98.30% 99.00%
Naive Bayes 98.60% 96.70%  98.00% 98.32%

3.3 Statistical results

The output data from the feature selection section,
which was used as input for training the machine learn-
ing models, was analyzed using ANOVA [37] statistical
criteria. The detailed findings are presented in Table
5, demonstrating a significant difference with a P-value
< 0.05. This significance is observed in all sensor out-
puts and indicates that the selected features have a no-
table impact on the model performance, highlighting
the effectiveness of the feature selection process in dis-
tinguishing between different features.

4 Discussion

In this study, we investigated the kinematics of the lower
limbs of SSI patients using IMU sensor. We employed
ML-supervised algorithms to analyze main gait char-
acteristics and diagnose movement disorders in these
patients. The SVM model proved to have the highest
classification accuracy, followed by other models with
similar performance. SVM successfully identified the
most important features for diagnosing gait disorders
and achieved a highly accurate classification of both the
control group and the patient group (Table 4). These
findings demonstrate the efficacy of SVM in gait predic-
tion and suggest the potential usefulness of other meth-
ods such as k-NN, LDA, and Naive Bayes.

Pelvic outputs revealed significant differences in the
linear acceleration data between the two groups in the
anterior-posterior (AP) direction. These differences
were observed during both walking and forward bend-
ing conditions in the patient group. One compensatory
mechanism observed in the patients was posterior pelvic
tilt. This occurs when the body attempts to adjust the
center of gravity on the hips and legs. As a result, the
pelvic tilts forward (anterior tilt), and to compensate
for this, the body rotates the pelvic backward (poste-
rior tilt). This alteration in pelvic movement signifi-
cantly distinguishes it from the movement observed in
the healthy group [38].

5 Conclusion

This study used machine learning models to extract key
movement features from IMU sensor data, specifically

423

targeting gait abnormalities in SSI patients. These ab-
normalities included changes in pelvic tilt. This study
successfully identified movement disorders by analyzing
the sensor independently. Furthermore, the accuracy of
the machine learning models showed that the main fea-
tures of the extracted gait could distinguish SSI patients
from healthy individuals with more than 97% accuracy.

The obtained outputs show the potential of machine
learning models, SVM model, in handling complex non-
linear relationships in motion data. The findings of this
study can increase the results of treatment and reha-
bilitation and ultimately improve the quality of life of
SSI patients. However, it is important to note that one
of the limitations of this study is its exclusive focus
on women. Future research should include larger data
sets and examine both genders to explain the aforemen-
tioned differences.
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