
Abstract

The lack of explainability and interpretability is one
the biggest barriers in real world integration of ma-
chine learning. Many researchers tried to improve the
interpretability of black box models by post hoc expla-
nations, which try to explain the model by methods
like model simplifications, local explanations, explana-
tions by example and many more. Recent user stud-
ies showed that Grad-CAM and Lime were less under-
standable than simple nearest neighbors from the train-
ing set. Counterfactual explanations, which are one of
the example based explanations have emerged as one
of the main methods that can unravel the causal re-
lationship learned in the black box models. to tackle
these challenges we propose a novel method to cre-
ate counterfactual explanations with desired probabil-
ity in desired class which makes this method more user
friendly. In particular, we delve into the concept of semi-
factual explanations and define near-bound counterfac-
tuals as points with two dominant class probabilities,
which makes them closer to the decision boundary. We
used Variational AutoEncoders (VAEs) to create latent
space and utilize this latent space to find the minimum
semantic (not adversarial) change that can change the
prediction of instance to any probability in the desired
class. However one of the main challenges in creating
counterfactuals is the trade-off between the amount of
change applied on the instance and the plausibility and
interpretability of generated counterfactuals, we con-
ducted experiments on two datasets demonstrating the
effectiveness of our approach.

Keywords: Explainable Ai, Counterfactual, and Inter-
pretablity

1 Introduction

Counterfactual explanations have emerged as a promi-
nent trend in the quest for model interpretability. These
explanations involve generating instances akin to the
original input but with altered feature values, thereby

  
   

 

shedding light on the factors that have influence on
changing model’s output. Recent studies [1] have high-
lighted the efficacy of explanation-by-example meth-
ods across various domains, highlighting their prefer-
ence over other techniques. The inclination towards
explanation-by-example is rooted in human cognition,
where examples and counterfactuals play a pivotal role
in understanding and planning. Through hypothetical
scenarios and what-if analyses, individuals contemplate
alternative courses of action and their potential out-
comes, a process integral to education, decision-making,
and risk assessment.

The formal definition of counterfactual explanations
entails making minimal adjustments to an instance to
achieve a desired alteration in the outcome. Consider a
scenario where a loan request is under scrutiny: for ap-
proval, an individual might need to extend their working
hours by precisely 10 hours. However, it’s imperative
to note that altering features solely to provoke a change
in prediction, such as changing one’s gender, decreas-
ing user age or even indiscriminately increasing work-
ing hours without considering other factors like marital
status and age, is neither realistic nor aligned with the
manifold of our data. Therefore, a methodological ap-
proach is necessary to ascertain meaningful alterations
that render counterfactuals interpretable. These alter-
ations should not only conform to our training data’s
manifold but also align with potential variations in the
new class manifold, ensuring that counterfactuals re-
main relevant and insightful within the context of our
model’s decision-making process.

Another concept sits closely to counterfactuals is
semifactuals, Kenny (2020) pointed out the importance
of semi factual explanations and lack of research in this
area. An example of semi-factual explanations is “Even
if you had double your current salary, your loan would
still have been refused”. Kenny (2020) argued that these
explanations capture important causal information re-
garding the prediction as they bring insight to the de-
cision boundary of the classifier and help users interact
with the models and make more informative decisions.

They also presented a method called Plausi-
ble Exceptionality-based Contrastive Explanations
(PIECE) which automatically models the distributions
of latent features to detect “exceptional features”, fea-
tures that play an important role in an instance’s pre-
diction, modifying them to be “normal” in explanation
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generation. The method finds semi-factuals by finding
the last step before a change happens in the model’s
prediction, but sets no constraint on getting predic-
tions with two dominant classes, initial class and de-
sired class, that’s what we call near bound examples,
examples that are closest to get 50-50 prediction in two
classes. We can also use these examples to improve our
model with samples near the decision boundaries where
classification is really hard.

To be able to create meaningful Counterfactual and
Semifactuals, we need to create a latent space that holds
semantics and characteristics of data rather than apply-
ing the changes in the feature space. When we are mov-
ing around in latent space and trying to create semantic
change on an instance we ideally assume we can find a
direction which can increase the characteristics of de-
sired class but when our latent space is entangled there
is a high possibility that the created changes increase
the characteristics of other classes as well, entanglement
can be a big challenge in finding optimized counter-
factuals in latent space, new methods try to address
this challenge by different approaches, we mixed triplet
loss with VAE to create disentangled latent spaces and
analyze our approach in different settings.

In this problem we often have a trade off between
these two objectives:

1. Creating a counterfactual with high probability in
desired class .

2. Minimizing the amount of change we want to apply
on the instance.

As Arnaud and Klaise (2019) mentioned “ Often a
trade off needs to be made between sparsity and inter-
pretability of CF”, we understood the amount of change
we need to apply on an instance to create counterfac-
tual is highly dependent to the instance it self so we
cannot find the perfect weights for these two terms so
we can balance them for all the instances we are trying
to explain.

In response to these challenges (The Trade Off and
the entanglment), our approach employs Variational
AutoEncoders (VAEs) to construct a latent space that
captures the underlying semantics of the data. We gen-
erate counterfactuals by optimizing a two step search
loss that can fix the trade off mentioned above or us-
ing curved interpolation that address the entanglement
challenge to find the sample with minimum loss in inter-
polated lines in the latent space. We then address the
challenge of entanglement of latent space and compare
the counterfactuals generated in each space.

Finally, to validate our method we compare it with
the SOT approaches and use counterfactuals in the do-
main of model debugging, where we introduce human
centered procedures to annotate generated hard samples
(near bound counterfactuals) and improve classifiers by
training them on hard samples.

The main contributions of this paper are three-
fold

• Creating Smooth transformation from instance to
counterfactual which will enable the user to under-
stand the exact result of small changes on predic-
tion that will lead to counterfactual and let him/her
choose the exact amount of change to overcome the
challenge caused by entanglement in Latent space
of VAE, we introduce two solutions: curved inter-
polations and disentangling the latent space using
triplet loss vae.

• Introducing a novel optimization method for creat-
ing interpretable counterfactuals with desired prob-
abilities and classes with a two step solution that
addresses the trade off between distance and chang-
ing the prediction.

• Introducing the concept of near bound counterfac-
tuals, and utilizing a loss function to create CFs
with only initial class and desired class dominant
probabilities, focusing on new applications for semi
factual generation methods we introduce human
centered iterative procedures to annotate generated
hard samples (near bound counterfactuals) and im-
prove classifiers by training them on hard samples.

2 Related Work

Post hoc explanations in machine learning, including
techniques like SHAP, LIME, and feature attribution
methods, have garnered considerable attention for their
ability to shed light on model predictions. Recent stud-
ies emphasize the effectiveness of example-based expla-
nations, highlighting their superiority over other meth-
ods. Counterfactual generation, rooted in the work of
Wachter et al., initiated the trend towards explanation-
by-example methodologies. However, early approaches
faced limitations, prompting advancements such as Van
Looveren and Klaise’s prototype-guided counterfactu-
als. These innovations aimed to improve interpretabil-
ity by integrating plausibility criteria into the explana-
tion generation process.While existing research predom-
inantly focuses on counterfactual explanations, Kenny
introduced the concept of semifactuals, highlighting
their potential significance in understanding model pre-
dictions. Despite their promise, a precise methodology
for generating semifactuals remained elusive. Notably,
Saeed Khorram’s Cycle-Consistent Counterfactuals by
Latent Transformations introduced a nonlinear frame-
work for generating counterfactuals, enriching the land-
scape of explanation methodologies.

Among the existing techniques, Van Looveren and
Klaise’s approach stands out for its utilization of pro-
totypes to guide the counterfactual generation process.
By leveraging prototypes, their method
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addressed the interpretability and plausibility chal-
lenges inherent in early counterfactual approaches.

However, the lack of precise methods for semi factual
explanations underscored a gap in the literature, which
Kenny highlighted with the PIECE framework.

Saeed Khorram’s Cycle-Consistent Counterfactu-
als by Latent Transformations introduced a novel
paradigm, emphasizing nonlinear transformations to
generate counterfactuals. This approach diverges from
traditional linear methods, offering a fresh perspective
on explanation generation.

In response to these developments, our work builds
upon the foundational concepts of counterfactual and
semifactual explanations. We propose a comprehensive
framework that integrates disentangled latent spaces,
near-bound counterfactuals, and human-centered model
debugging procedures to enhance the interpretability
and trustworthiness of machine learning models. By
leveraging advancements in disentanglement learning
and near-bound counterfactuals, we aim to address the
limitations of existing methods while advancing the
frontier of interpretable AI.

In summary, the evolution of counterfactual and semi-
factual explanations reflects a concerted effort to un-
ravel the decision-making processes of machine learning
models. Each advancement, from prototype-guided ap-
proaches to nonlinear transformations, contributes to
the ongoing quest for transparent and trustworthy AI
systems.

3 Preliminaries

Before diving into details we need to define several ba-
sic concepts in regards to latent space and generation
models.

3.1 Entanglement

(Na et al., 2023), entanglement denotes mixing or in-
terdependence of latent factors with respect to labels
within a model’s space, such as a Variational Autoen-
coder (VAE). In an entangled representation, the data
points of all classes are mixed up in the latent space,
hindering to find a direction that will only increase a
desired class membership. Mitigating entanglement is a
key objective in contrastive learning, as it aims to foster
the independence and interpretability of latent factors,
enhancing the model’s ability to capture meaningful and
separate distribution of classes in various latent spaces.

3.2 Prototypes

Building upon the methodology proposed by Van Loov-
eren & Klesse (2020), prototypes are defined for a given
instance x0. Initially, the predictive model is invoked
to label the dataset with the classes predicted by the

model. Subsequently, for each class i, the instances be-
longing to that class are encoded and ordered based on
their increasing ℓ2 distance to ENC(x0). Analogous to
the approach outlined in (Snell et al., 2017), the class
prototype is determined as the average encoding over
the K nearest instances in the latent space sharing the
same class label.

4 Methodology

We defined the counterfactual generation as an op-
timization problem where we want to minimize the
amount change applied to an image while shifting the
class of that image to the desired class, to mathemat-
ically model this problem we incorporated two diffrent
approach one models the problem geometric and the
other is a two step optimization process.

1. curved interpolations

2. latent space optimization

4.1 Curved interpolation:

When we have a semantic latent space for our data a
line can mean a semantic transformation from one point
to another, the power of interpolations in augmenting
new samples has been demonstrated by methods like
SMOTE, Chawla et al. (2002).

But first we must understand why simple interpola-
tion can not be useful in counterfactual generation prob-
lem, when we have a simple line from an instance to des-
tination in desired class we may encounter many other
classes in the line in other words the semantic change
of this line may not only be in favor of our destination
class, this problem is also referred to entanglement of
latent space which was defined earlier. so we need our
line to be able to dodge other classes to have a clean
transformation.

We model counterfactual problem as finding a line
with curves from given instance to a destination which
is inside our desired class distribution in latent space,
additionally we do want any point of this line to be
decoded as either initial class of instance or destination
class.

We first define the process of how we find our des-
tination for given instances LCR and then the Curve
interpolation process.

4.1.1 Latent Class Representative (LCR)

We will define a new representative for each class for
any given instance, we define LCR like prototypes but
with one more condition that each of the K nearest
neighbors of each class we choose must be reconstructed
and then classified in the desired class by our predic-
tive model. In formal terms, we define, for each unique
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Figure 1: First row: Normal interpolation in latent
space Second row: Curved interpolation method in la-
tent space

class i, instances belonging to that class are encoded
and arranged based on their increasing ℓ2 distance to
ENC(x0). Each Latent Class i Representative is de-
fined as the average encoding over the K nearest in-
stances in the latent space whose reconstructions yield
a class i prediction by our predictor model which we are
trying to explain. By ensuring that our class prototypes
are accurately reconstructed within the correct class, we
can ascertain the discovery of a perfectly interpretable
counterfactual. This counterfactual may not necessarily
involve minimal changes for the input instance across all
classes.

LCRi :=
1

K

K∑
k=1

ENC(xik)

where PRED(REC(ENC(xik))) = i

4.1.2 Algorithm for Curve Interpolation Process

1. Identify the Local Closest Region (LCR) for the
given instance to serve as the destination.

2. Create a straight line from the instance to the
LCR.

3. Divide the line into N arbitrary points.

4. Detect the first entanglement occurrence:

• An entanglement occurrence is defined as a
point along the line that, when decoded into
feature space, is predicted as a different class
from the initial or destination classes.

5. Search for a substitute for the first entanglement
occurrence:

(a) Generate M random points within a small-
radius sphere centered around the entangle-
ment point.

(b) Check if any of the generated points are clas-
sified as either the initial or destination class
after decoding.

(c) If such points exist, select the one closest to the
previous point along the main line to replace
the entanglement point.

Figure 2: Curve Interpolation Process

(d) If no valid points are found, increase the radius
incrementally and repeat step 5(a).

6. Return the set of points forming the final interpo-
lated curve.
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Figure 3: Demonstration of Counterfactual Latent
Space Membership Search

4.2 Counterfactual Latent Space Membership
Search

This method is a two step optimization, the first step is
only about changing the prediction, we focus solely on
decreasing the cross entropy loss with the desired class
as a gold label to the given threshold. then we start de-
creasing the distance of the last step image to a starting
instance while not changing its predicted probabilities.
As this two step solution free us from all the parameters
that controlled the trade off between minimizing applied
change and interpretability of resulting CF, we now can
create the best counterfactual distance wise while hold-
ing desired interpretability. Finally By introducing near
bound counterfactuals and near bound search loss, we
utilize the same optimization process to create counter-
factual and semi factual explanations with two domi-
nant probabilities. This way we can focus on the notion
of semi factuality directly.

4.2.1 Interpretable Counterfactual Loss Function

To identify and generate counterfactuals within the de-
sired class, we introduce a loss function that guarantees
both the alteration of prediction and minimal pertur-
bations. We utilize cross-entropy and reconstruction
error to ensure the interpretability of counterfactuals.
When our counterfactual exhibits a high probability in
the desired class, we regard it as more interpretable.
The problem has two parameters which have very non
linear relation with each other so it was very difficult
to find a suitable parameter for the optimization prob-
lem, as there is a trade off between distance and inter-
pretability.

Even for different instances we would need different
parameters as some instances are closer to the destina-
tion they should get to. To solve this problem without
the use of adaptive parameters we propose a two step
optimization solution. We understood that changing
the prediction must happen first since it is the main

task, after changing the class of input instances we can
focus on minimizing the distance of the created point
and starting instance while locking the cross entropy
loss in desired value.

If loss ce > Th, then final loss = 100 · loss ce; other-
wise,

final loss = Dl+8·Df+10·Lce+5·global rec err+20·cr p

• Lce is the cross-entropy loss of the generated point
with the desired class as the gold label.

• Th is the threshold that we want for our predic-
tion in the desired class. This threshold decides
between changing the prediction and minimizing
the distance.

• Dl is the distance in latent space, defined as the ℓ2
norm of the distance between the instance and the
current point.

• Df is the ℓ2 norm distance in feature space.

• global rec err is the reconstruction error of the
current point using the Global VAE.

• cr p is the Class VAE reconstruction penalty, de-
fined as:

penalty = RELU(rec errt0 class vae−rec errti class vae)
2
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Figure 4: Loss and Desired Class Probability while us-
ing Inter- pretable Counterfactual method

4.2.2 Near Bound Counterfactual Search Loss:

In defining counterfactuals, we previously focused solely
on minimizing changes that induce a change in predic-
tion, without direct consideration of their proximity to
the decision boundary. By utilizing cross-entropy in the
loss, we aimed to create counterfactuals with minimal
change that exhibit a single dominant prediction. How-
ever, to address the issue of proximity to the decision
boundary alongside minimal changes, we aim to min-
imize the difference between initial and desired class
probabilities in classifier predictions while also minimiz-
ing the sum of probabilities of all other classes. To
enforce the change in counterfactual class predictions,
we include (pd − pi) in the loss function. By adopting
these adjustments, we can create counterfactuals with
two dominant predictions.

final loss = 15 · (pd− pi)2 + 20 · (sum)2 + 5 · (pd− pi)

+12 ·
(
2

3
· distance + 1

3
· distance l

)2

+ 5 · rec err

4.2.3 The Optimization Process

We used the Adam optimization to move in the latent
space of our encoder and optimize our loss function.
It was argued that moving in latent space can cause
semantic changes and this desirable property lets us
achieve interpretable counterfactual by guidance of gra-
dients of the classifier model toward desired class bound-
ary in latent space. We will multiply cross entropy loss
by a big number like 1000 to make sure the distance
values don’t take all the attention of the optimizer.

This will cause discontinuities in our loss values seen
in figure 3. When we minimize the distance we will
usually increase initial class probability and we may pass
the threshold of cross entropy but if this happens the
optimizer will find the fastest way to get back to the
desired threshold. It is expected that the probability of
desired class will start by a low level and increase to get
to threshold and then oscillate around the threshold
while minimizing the distance during this optimization.

We divided the step size by 2 each 200 epoch to find
fine grain changes that minimizes the distance.

5 Experiments

We have designed the following experimental study in
order to answer the following research questions:

• RQ1: Can ICSE optimization method outperform
state-of-the-art counterfactual methods based on
the former quantitative counterfactual metrics?

• RQ2: How much and in what way different dis-
entanglement methods can affect ICSE and other
SOT CF generation methods ?

• RQ3: Can Human in the loop Near Bound Coun-
terfactual Generation pipeline help us debug and
improve our classification models ?

5.1 Setup MNIST and Fashion-MNIST.

We evaluate the ICSE method against CF explana-
tion baselines, namely, Contrastive Explanation Method
(CEM), Counterfactual Visual Explanation (CVE) on
the MNIST and Fashion-MNIST datasets by both qual-
itative inspection and an extensive set of quantitative
metrics. Images from both datasets have 28×28 reso-
lutions in 10 classes. We use the standard train/test
split. use the examples from the query and CF classes
in the train set (∼ 6,000 samples/class) for train-
ing and the examples from the query/CF class in the
test set (∼ 1,000 samples/class) for evaluation. We
used official implementation of our method which were
avialble in the github, our source code for experi-
ments is available at https://github.com/sooroushr/
Counterfactual_Explainations for other researchers
to reproduce the results.

5.2 Inspection of the Counterfactuals

In this section, we list the evaluation metrics and their
interpretations in the realm of counterfactuals.

• L1 & L2 Distance: The L1 norm distance of the
instance and the generated counterfactual. This
distance helps us find the amount of change applied
to the instance.

• Reconstruction Error with General VAE:
This metric calculates the general plausibility of
generated counterfactuals. We train a VAE on the
whole training set and use it to calculate the re-
construction error. We find the L2 norm of the
distance between the counterfactual and its recon-
struction using the VAE and report it as the re-
construction error of the counterfactual.

• Latent Space Distance: The L1 and L2 norm
distances between the instance and the generated
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counterfactual in the latent space of the general
VAE. This distance demonstrates similarities in
characteristics between the instance and the coun-
terfactual.

• IM1: Let VAEti and VAEt0 be Variational Au-
toencoders trained solely on the instances of class
ti and t0 from the training data, where t0 is the
initial class of the instance we are trying to find
a counterfactual for and ti is the destination class
that the generated counterfactual must belong to.
We consider a counterfactual interpretable if it be-
longs to class ti much more than class t0. One way
to calculate this is with the prediction model, but
single class trained VAE’s also help us calculate
how much the characteristics of the given image fit
the semantics of the class it belongs to. Formally,
IM1 measures the ratio between the reconstruction
errors of xcf using VAEti and VAEt0.

A lower value for IM1 means that xcf can be better
reconstructed by the autoencoder which has only
seen instances of the counterfactual class i than
by the autoencoder trained on the original class
t0. This implies that xcf lies closer to the data
manifold of counterfactual class i compared to t0,
which is considered to be more interpretable.

IM1(AEi,AEt0, xcf ) :=
∥x0 + δ −AEi(x0 + δ)∥22

∥x0 + δ −AEt0(x0 + δ)∥22 + ϵ

• Human Acceptance: if a human considers the
change and the generated counterfactual valid and
a real number in desired class.

• Time: The amount of time it took the method to
create the counterfactual.

5.3 Research Question 1 (RQ1)

RQ1: Can the ICSE optimization method out-
perform state-of-the-art counterfactual meth-
ods?

To answer this question, we designed a fair experi-
ment to compare the counterfactuals generated by ICSE
to two other methods: CEM and CF Proto. The CEM
method implemented in the Alibi Python library does
not accept a destination class, so we first used this
method in our experiment to get a counterfactual and
then used the class of the generated counterfactual as
the destination class for ICSE and CF Proto. We eval-
uated all of the quantitative metrics for 42 samples for
each MNIST dataset (digits and fashion) and method.

5.3.1 Distance

the comparative analysis revealed CEM applies really
small amount of change on the instance, this change

Figure 5: Mean Evaluation Metrics for 42 Test samples
with Each Method

Figure 6: L2 Distance of Different Methods on 42 images
from test set
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Figure 7: IM1 Score of different Methods on 42 images
from test set

is usually strong and does not seems like a noise, but
sometimes the change is a complete noise and it seems
like the method failed.

ICSE is goes tow to tow with CEM in distance metrics
alike CEM the Counterfactual generated by ICSE are
semantically changed and the change does not seems
like noise at all also in all of 42 instances only 2 of ICSE
counterfactuals were human unacceptable while CEM
had 20 human unacceptaple counterfactuals. we can
see that CEM has worst metrics in means of IM1 and
Reconstruction Error.

5.3.2 Interpretablity

ICSE method has lowest IM1 Mean which shows that
this method is the most interpretable method amongst
the others, the important point is ICSE has lower Dis-
tance and IM1 compared to other methods and this
means that it is much more testable and the changes
are the most small and intertptable possible changes.

Figure 8: Instance and CF generated by CF Prototype
Method

Figure 9: instance and CF generated by CEM

Figure 10: instance and CF generated By ICSE

5.4 Research Question 2 (RQ2)

RQ2: What is the effect of disentanglement in
the ICSE explanations ?

disentangling the latent space could be a solution to
the entanglement challenge.

5.4.1 Triplet Loss VAE

we implemented triplet loss vae to control the entangle-
ment of the generated latent space. in this method we
add triplet loss to the loss of VAE, triplet loss gets an an-
chor and positive and negative sample and decrease the
distance of anchor and positive sample while increasing
the distance of anchor and the negative sample this will
lead to same class data points to create clusters in the
latent space.

Ltriplet = max(0, ∥f(xa)−f(xp)∥22−∥f(xa)−f(xn)∥22+α)

where:

• xa is the anchor sample,

• xp is the positive sample,

• xn is the negative sample,

• f(·) is the embedding function (encoder in the
VAE),

• α is the margin.

5.4.2 Total Loss for Triplet Loss VAE

The total loss for the Triplet Loss VAE is a combination
of the VAE loss and the triplet loss.
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Figure 11: Illustration of Triplet loss

Figure 12: An example of cf generated in entangled and
dis- entangled space using optimization method

Ltotal = LVAE + λLtriplet

where λ is a weighting factor to balance the VAE loss
and the triplet loss.

5.4.3 Comparative Analysis

Our hypothesis was by employing Triplet Loss VAE we
can create a disentangled latent space and by changing
the margin of the triplet loss we can create different
amount of disentanglement. another way to measure the
disentanglement is to train a classifier on the embedding
of data and evaluate the classification results of that
classfier. We tested on different spaces and compared
the metrics of cf to find out the effect of entanglement
in this process:

Table 1: Average Metrics for Margin 3, 150 test samples
Metric Entangled Mean Disentangled Mean
l1 distance 88.558487 96.287669
l2 distance 8.782893 8.612775
rec err 3.912788 4.625215
IM1 Mean 1.014836 0.920788

based on the human analysis we found the margin
3 disentangled latent space better than vanila latent
space thus showcasing that disentangling the latent
space would create more interpretable counterfactuals
but too much disentanglement may remove the sections
of latent space which is a joint space between classes (

Table 2: Average Metrics for Margin 20, 150 test sam-
ples
Metric Entangled Mean Disentangled Mean
l1 distance 83.520761 107.862631
l2 distance 8.334036 9.232445
rec err 4.062162 4.641649
IM1 Mean 0.962065 0.925619

entanglement ) and removing these ambiguous counter-
factuals and increase the interpretablity but this is with
the cost of increasing the amount of change applied.

5.5 Research Question 3 (RQ3)

RQ3: Can we use Near Bound Counterfactu-
als in a human-in-the-loop process for debugging
and improving classification models?

For this experiment, we first imbalanced the MNIST
dataset by removing 90% of the data for one of the
classes (class 9). We aim to investigate the power of aug-
menting our data using the near-bound counterfactual
(NB CF) method. These counterfactuals are designed
to be close to the decision boundary between two classes
and are hard samples that the model is more likely to
misclassify.

By labeling the misclassified NB CFs using a human-
in-the-loop process, we aim to debug the model and im-
prove its accuracy, especially on the imbalanced class.
Labeling these near-boundary points helps the model
find the decision boundary more efficiently and with
fewer data points. To test this hypothesis, we aug-
mented 60 samples using three methods: SMOTE [?],
NB CF method from ICSE, and using real data.

We trained the same model on all datasets for 10
epochs and then compared the metrics to see which
method improved the model better.

Table 3: Class 9 Classification Report on different
datasets
Dataset Class 9 Precision Class 9 Recall Class 9 F1
Imbalanced 100 92 95
Smote 99 95 97
NB CF 100 94 97
Real Data 100 95 97

6 Discussion

We have demonstrated the effectiveness of our method
for data augmentation and using the information and
characteristics of two classes to create a new point in
desired class, most of data augmentation methods in
imbalanced datasets only use the minor samples for aug-
mentation but using the counterfactual methods we can
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Figure 13: Examples of misclassified NB counterfactuals

create a new data augmentation technic which would
have more power than current methods.
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