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Abstract

Identifying camouflaged objects in images is a major
challenge in computer vision, requiring precise differen-
tiation from complex backgrounds. Traditional methods
often struggle due to the unpredictability of camouflage
patterns, necessitating extensive labeling efforts. Deep
learning can help, but a lack of labeled data hinders
progress. To address this, we employed weak supervi-
sion using scribble annotation to reduce labeling efforts
while maintaining accuracy. We introduced CTENet
(Contrast Texture Enhanced Network), trained on the
S-COD dataset. CTENet features four key modules:The
LCC module simulates the visual suppression process of
the visual system to improve image contrast and clar-
ity. The TEM module utilizes the receptive field present
in the visual system to enhance texture. The bound-
ary ambiguity between foreground and background has
been a fundamental challenge; thus, the EDB module
was proposed to assist the network by reinforcing these
boundaries. The CBAM module is used to highlight
important features in the image. Experimental results
demonstrate that our model outperforms previous ap-
proaches in camouflage detection.

Keywords: Camouflaged objects, Deep learning, scrib-
ble annotation, Weak supervision

1 Introduction

Finding camouflaged objects in images is a big deal and
has many applications. Being able to find and locate
these hidden objects is crucial for military surveillance,
wildlife monitoring, and security systems. For example,
animals use camouflage to survive and protect them-
selves from predators (see Figure 1). Detecting camou-
flaged objects is a tough challenge that requires many
techniques including:

Image Processing: Image processing algorithms can
be used to analyze images and find objects that blend
in with the background. For example, edge detection
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Figure 1: Camouflage in Wildlife
[8]

can be used to find the edges of objects and separate
them from the background.

Machine Learning: Machine learning models can be
trained on sample images to detect camouflaged objects.
For example, a deep neural network can be trained with
camouflaged images and non-camouflaged objects to de-
tect camouflaged objects in new images.

Computer Vision: Computer vision can be used to ex-
tract features of camouflaged objects and separate them
from the background. Research on finding camouflaged
objects is moving fast, new and innovative methods are
being developed. AI algorithms can recognize objects
based on patterns and features, reducing human error.

The goal of this research is to detect camouflaged ob-
jects in images using deep learning methods. Detection
of camouflaged objects has many applications in art[4] ,
medical diagnostics[10], industrial defect detection[12]
[22], agriculture[5], surveillance cameras[2], defense,
security, and military[15]. Although COD methods
have performed very well, they are heavily dependent
on pixel-by-pixel annotation in large datasets. The
first challenge is that pixel-by-pixel annotation is time-
consuming. Annotating an image takes almost sev-
eral minutes, making it difficult to build large datasets.
In contrast, based on our experience, annotating using
lines takes only a few seconds depending on the type of
camouflaged object, which is several times faster than
pixel-by-pixel annotation.

Another challenge in camouflage detection is the
unclear boundaries between objects and their back-
grounds. This ambiguity makes it harder to separate
the object from the background, making this task more
difficult than other object recognition tasks. In many
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cases camouflaged objects blend in with the background
naturally, making it hard to identify using traditional
algorithms. So we need to develop more advanced al-
gorithms and new methods to improve the accuracy
under such conditions. Given these challenges, further
research on camouflage detection is needed to provide
better solutions for object detection in complex envi-
ronments.

We used weakly supervised methods that first used
the S-COD1 dataset labeled with lines and then pro-
posed CTENet to solve the ambiguous boundary prob-
lem. Initially, some studies used traditional feature-
based methods (such as texture, brightness, color, etc.)
for foreground-background differentiation, which had
high computational costs. In 2019, the first deep-
learning network was introduced[14]. This network
heavily relies on training data. If the training data does
not include sufficient and diverse samples of camou-
flaged objects, the network’s performance may decline.
Additionally, this method may not perform well under
varying lighting conditions or complex backgrounds. In
2020, the SINet[9] architecture was introduced as the
first robust deep learning network that also depended on
training data along with their labels; pixel-level label-
ing for training data is highly labor-intensive. In recent
years, CNN-based methods employing complex strate-
gies have achieved significant advancements in COD
tasks. For example, SINetV2[8] and BASNet[25] use
multi-stage approaches for initial segmentation that suc-
ceed through enhancement and refinement techniques.
However, most of these deep network-based approaches
that have achieved superior performance still require
high training samples, imposing a considerable anno-
tation burden.

In Section Two we looked at the previous work. In
Section Three we will explain our approach and archi-
tecture for improving camouflage system performance
in Section Three. Finally, we will detail our proposed
methods and architecture and present the results ob-
tained from experiments and evaluations conducted on
datasets in the last section while highlighting the im-
portance of these findings for advancing future research
in this field.

2 Literature Review

2.1 Camouflaged object detection

In recent years, deep learning approaches have success-
fully replaced classical features with learned features
to a large extent. Network-based methods, particu-
larly deep neural networks, are recognized as signifi-
cant innovations in this field. These methods lever-
age the power of deep learning to identify complex pat-

1scribble camouflaged object detection

terns and nonlinear features in large datasets, which
is why they are increasingly used for detecting cam-
ouflaged objects. Initially, deep learning-based meth-
ods in the domain of camouflage were based on neural
networks, but subsequently, transformers demonstrated
remarkable advancements by capturing long-range fea-
tures. Recently, CNN-based approaches have made sig-
nificant advancements in camouflaged object detection
(COD) with the release of large-scale datasets. Some
works attempt to extract the subtle features of camou-
flaged objects from the background through carefully
designed feature exploration modules, such as back-
ground feature learning[20], texture learning[27], and
frequency domain learning[26]. Additionally, multi-
task learning frameworks are commonly used for COD.
These methods generally introduce tasks such as clas-
sification, edge/boundary detection, and object rank-
ing. Furthermore, some methods identify camouflaged
objects by mimicking the behavioral patterns or vi-
sual mechanisms of predators, such as search and iden-
tification processes and zooming in on camouflaged
objects. Although CNN-based models have achieved
promising performance, these methods do not exam-
ine long-range dependencies due to limited receptive
fields, which are critical for COD in images contain-
ing diverse objects. Given the superiority of transform-
ers in modeling long-range dependencies, recent stud-
ies have sought to leverage their potential in various
visual applications such as image classification, seman-
tic segmentation, and object detection, which have seen
significant advancements. By utilizing attention mech-
anisms, transformers perform better than CNN-based
models in capturing long-range dependencies[3]. They
can learn image data in a sequential approach. Unlike
convolutional layers, the multi-head self-attention layer
in transformers has dynamic weights and a global recep-
tive field, making it more effective and powerful in cap-
turing non-local knowledge. This property has been uti-
lized in COD tasks in recent years; however, transform-
ers suffer from high computational and memory costs.
FSPNet[13] is designed to improve local modeling and
feature aggregation, while OSFormer[24] is introduced
as the first one-stage system for segmenting camouflaged
instances. These models effectively combine local capa-
bilities and long-range dependencies through innovative
mechanisms, contributing to greater accuracy in object
identification.

2.2 Weakly Supervised Learning

In weakly supervised learning, training data is anno-
tated with incomplete or inaccurate labels. The level of
supervision is ”weak” because the provided annotations
are not as precise as those in fully supervised learning.
The goal of weakly supervised learning methods is to
learn from this limited information to predict or classify
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new samples. There are various forms of weak supervi-
sion; some common types include partial labels and in-
accurate labels[19]. Weakly supervised learning allows
models to achieve similar or better performance com-
pared to fully supervised methods using weaker and less
costly labels. This approach is particularly useful when
accurate labeled data is not available or is expensive to
obtain. Weakly Supervised Segmentation (WSS) mod-
els are designed to exploit weak labels instead of relying
on precise pixel annotations[16]. For example, these la-
bels can include image-level labels, bounding boxes, line
segments, and points.

2.3 Weakly Supervised Camouflaged Objects De-
tection

recent advancements in semantic segmentation images
have largely been driven by deep learning techniques,
most of which relate to deep learning techniques. This
research also examines deep learning-based semantic
segmentation methods, particularly weakly supervised
approaches, as research in this area is limited and there
is a need for more efficient methods. Despite advance-
ments, there are still shortcomings in the existing meth-
ods, and studying weakly supervised learning could en-
hance the efficiency of fully supervised learning and
move toward unsupervised learning.
a. Segmentation of Histopathology Images:
The author examines an approach for segmenting
histopathology images using point annotation that is
weakly supervised. This method improves segmentation
accuracy by using a contrast-based variational model
that identifies important image features through con-
trast difference analysis. This approach is especially
applicable in histopathology images that require high
precision[23].
b. Line-Based Dataset (S-COD): This dataset is
the first collection for Weakly Supervised COD (WS-
COD) and presents a line-based architecture that ex-
pands lines into camouflaged areas by increasing con-
trast. However, the sparsity of line labels and the lack
of explicit guidance create challenges in accurately de-
termining the boundaries of camouflaged objects[11].
c. (MiNet): This paper proposes a new network called
MiNet for WSCOD that addresses challenges arising
from insufficient lines. MiNet includes an RGM module
that utilizes extracted regional features to produce dis-
tinct edge maps and has also designed a region bound-
ary refinement network that iteratively and multi-level
refines object boundaries[17].

3 Methodology

3.1 Overview of Structure

In this section, we will examine and explain the pro-
posed architecture of CTENet, which is utilized in the
present research. Additionally, the various modules em-
ployed in this architecture will be introduced in detail to
clarify the role of each in the process of identifying and
segmenting camouflaged objects. Given the importance
of these stages, we will strive to thoroughly and sci-
entifically investigate each relevant aspect, providing a
suitable foundation for future analyses. The introduced
framework, named CTENet, is designed for image seg-
mentation. This network leverages the main structure
of ResNet-50 to extract input features at different scales.
CTENet consists of four modules:

• Local Context Contrast Module (LCC): This
module enhances contrast and image clarity by
mimicking the visual suppression process and im-
proving boundary lines in hidden areas.

• Texture Enhancement Module (TEM): Uti-
lizing the receptive field present in the visual sys-
tem, this module enhances texture to aid in better
object detection.

• Edge Detection Boundary Module (EDB):
This module emphasizes the need for guidance to
direct segmentation correctly, alongside the impor-
tance of enhancing texture and contrast.

• Convolutional Block Attention Module
(CBAM): This module is designed to highlight
key features in the image.

CTENet combines the power of deep learning al-
gorithms with the simplicity of scribble annotation
through weak supervision, leveraging the strengths of
both techniques to facilitate accurate identification and
highlighting of camouflaged objects in complex scenes.
Overall, the LCC module[11] is used for low-level fea-
tures, while TEM[8] is used for high-level features to
obtain contrast-rich information and detailed texture
information. Initially, input is fed into the ResNet-50
network to extract multi-scale features (see Figure 2).
These features are then transferred to the LCC, TEM,
EDB[17], and CBAM modules. The extracted features
are obtained at five different levels (Xi), which include
lower-level features (X1 and X2) as well as higher-level
features (X3 and X4). In addition, CTENet utilizes
an auxiliary extractor (CBAM)[21] to obtain key image
features. The extracted features are integrated using
a combination of multiplication and cross-aggregation
strategies. CTENet ultimately produces multi-level seg-
mentation maps as output and also extracts an inter-
mediate feature map for calculating the loss function.
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Figure 2: extracting features from ResNet50

During the training process, two loss functions are used
to guide segmentation and ensure the stability of predic-
tions, each of which includes two additional loss func-
tions. The two loss functions are:

• Guided Feature Loss Function

Contextual Affinity (CA) and Semantic Significance
(SS) functions.

• Consistency Loss Function

Cross-View (CV) and Intra-View (IV) functions.

3.2 Input Data

The training dataset is defined such that Xn is the in-
put, Yn is the annotation map, and Nimg is the to-
tal number of training images. Specifically in this con-
text, Yn is represented as scribble lines where one rep-
resents the foreground, two represent the background,
and zero represents unknown pixels.

3.3 Local Context Contrast Module (LCC)

Since camouflaged objects typically share different low-
level features (such as texture, color, and intensity) with
the background, detecting subtle differences is not easy.
The visual suppression process in the retinas of mam-
mals enhances clarity and contrast in visual responses
by suppressing the activity of neighboring cells. LCC
utilizes the capability that occurs in the human visual
system known as visual suppression to capture and en-
hance low-level differences. The LCC module takes two
low-level features (f1,f2) as input, which include texture,
color, and intensity information processed through two
branches of LCE with different receptive fields. Initially,
the input feature Fin is reduced to 64 dimensions using
a 1×1 convolution layer with batch normalization and
ReLU activation.

The resulting feature( Flow ∈ 64 × H × W ) is then
fed into three extractors (LCEs) aimed at focusing on

Figure 3: LCC module
[11]

different sizes of receptive fields. Each LCE consists of
a Local Receptor (LR), a Context Receptor (CR), and
two Local Feature Extractors (LFEs)(see Figure 3).

3.3.1 Local Receptor (LR):

The reduced-dimension feature enters a 3×3 convolu-
tion layer with a dilation rate of one, providing the ex-
tracted Flocal to the LFE. This process covers adjacent
input values.

3.3.2 Context Receptor (CR):

Similarly, the reduced-dimension feature enters a 3×3
convolution layer with a dilation rate of dcontext provid-
ing the extracted contextual feature to the LFE. This
process captures global and contextual information from
the image due to its larger dilation rate. In the two
LCEs, the dilation rates dcontext in the context receptor
are set to two, four, and six respectively, while in the
local receptor, the dilation rate remains fixed at one to
ensure that only local features are captured.

3.4 Enhanced texture module (TEM)

Enhancing texture in computer vision networks is of
particular importance, as this capability helps the net-
work effectively separate the background from camou-
flaged objects. Textures act as complex and rich pat-
terns in images that can provide key information about
local features and the structure of the image. By en-
hancing this aspect, we expect to achieve better results
in identifying camouflaged objects, allowing the network
to extract the edges of camouflaged items with greater
accuracy. This precision in edge extraction not only aids
in more accurate object identification but also leads to
better differentiation from the background. As a re-
sult, enhancing texture recognition not only increases
the accuracy and efficiency of the model but also enables
deeper and more precise analysis of complex scenes (see
Figure 4).
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Figure 4: TEM module
[8]

• Parallel Branches (fbi): The TEM module con-
sists of four parallel branches, each with different
dilation rates (d = 1,3,5,7) (see the image above).

• Convolution Layers: Each branch includes vari-
ous convolution layers, including a 1×1 convolution
layer for reducing channel size and two convolution
layers of (2i-1) × (2i-1) with different dilation rates.

• Branch Combination: The four branches are
combined, and then the channel size is reduced with
a 3×3 convolution layer.

• Shortcut Branch: A shortcut branch is used to
preserve the original information in the model.

• ReLU Function: At the end of the module, a
ReLU function is used to introduce non-linearity
to the output.

• Asymmetric Convolutions: Instead of standard
convolutions of (2i-1) × (2i-1), two asymmetric con-
volutions of (2i - 1) × 1 and 1 × (2i - 1) are utilized
to improve the model’s efficiency.

3.5 Edge Detection Boundary Module (EDB)

In the context of detecting camouflaged objects, enhanc-
ing contrast and texture is recognized as two key factors
in improving identification accuracy. However, we have
decided to add an additional mechanism (EDB) for edge
detection to this process. This decision was made due
to the challenges present in delineating the boundary
between the target and the background. In many pre-
vious works, the unclear boundary between the target
and background has been cited as a significant barrier
to the accurate identification of camouflaged objects.

Edge detection allows us to extract more precise infor-
mation about the structure and shape of objects. Edges
typically represent abrupt changes in intensity or color
and can serve as indicators of object boundaries. By

Figure 5: EDB module
[17]

utilizing edge detection mechanisms, we can identify
important features that may be overlooked in the pro-
cess of enhancing contrast and texture. The inputs to
this module are the layers Xi = {1, 2, 3, 4} from the
ResNet50 network. This module extracts coarse edge
features and then estimates the coarse edge map. As
shown in the upper left corner of (see Figure 5), each
of the main features is processed by a 3×3 convolution
block along with normalization and a ReLU activation
function. The features are then upsampled to the same
size. Finally, these features, which include rich details
of edges and high-level semantic information, are grad-
ually aggregated through concatenation operations and
1×1 convolution blocks, processed with normalization
and a ReLU activation function. Ultimately, a 3×3
convolution block is applied to extract the coarse edge
feature Fe. Additionally, a 3×3 convolution layer and a
Sigmoid function are applied to Fe to produce the coarse
edge map e. This map is used as a guide in the cam-
ouflage detection process within our architecture This
approach aims to guide segmentation using these maps
to improve target predictions.

3.6 Attention Module (CBAM)

By analyzing features in both channel and spatial di-
mensions, the CBAM can focus on important features
while reducing unnecessary ones. This leads to the ex-
traction of more precise information from images. The
CBAM attention module is recognized as an effective
tool for improving the performance of convolutional
neural networks. This module simultaneously identi-
fies and enhances important features using two types
of attention: channel attention and spatial attention.
The CBAM convolution block attention module pro-
vides a simple yet effective attention mechanism for
feed-forward convolutional neural networks (see Figure
6).

Using an intermediate feature map, it sequentially in-
fers attention maps in two separate dimensions: channel
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Figure 6: CBAM module
[21]

Figure 7: proposed CTENet

and spatial. These attention maps are then multiplied
with the input features to improve adaptive features.
Since CBAM is a lightweight and general module, it can
be integrated into any CNN architecture with minimal
costs and is trainable alongside base CNNs. These char-
acteristics make CBAM an efficient tool for enhancing
the performance of neural networks.

3.7 proposed Architecture of CTENet

Based on the ideas presented in previous sections, var-
ious experiments were conducted, and the results will
be presented in the next chapter. Based on the re-
sults of these experiments, several concepts were added
to the base architecture, resulting in a proposed archi-
tecture that we named CTENet, as shown in Figure
7. The overall structure of the architecture consists of
four modules: the LCC module, the TEM module, the
CBAM module, and the EDB module.

The Contrast Enhancement Module (LCC) is imple-
mented with three sub-modules (LCE) with different
dilation rates of 2, 4, and 6. Initial experiments were
conducted with various dilation rates, and by combining
these dilation rates of 2, 4, and 6, we achieved better
results (see Figure 7).

4 Loss Functions

Scribble annotations complicate the learning process for
accurately defining the boundaries of camouflaged ob-
jects due to limitations in the information they provide.

To improve the accuracy and stability of predictions
in the segmentation process, a new loss function called
feature-guided loss has been proposed. This loss func-
tion is based on the semantic features extracted from the
model and reduces computational overhead by weight-
ing features according to their importance relative to the
final prediction. To ensure consistency in predictions
under various conditions and reduce inconsistencies in
interpolation, a consistency loss function has been em-
ployed. This function not only examines the consistency
of predictions across different scenes but also evaluates
the consistency of predictions at each pixel in the fea-
ture map. With this approach, the ultimate goal is to
enhance the accuracy and efficiency of deep learning
models in identifying and segmenting objects.

4.1 Feature Guided Loss

Due to the use of scribble line-based methods and lim-
ited labeled data, many images remain unlabeled, re-
sulting in uneven boundaries. To leverage the avail-
able information, the CRF2 function has been proposed,
which utilizes pixel features such as color and position;
however, it has lower effectiveness in detecting camou-
flaged objects. For this reason, Feature Guided Loss has
been designed to predict clearer boundaries in camou-
flaged object detection by using both simple and com-
plex features. These two features are:

• Simple pixel features (contextual affinity)

• Complex features learned by a neural network (se-
mantic significance)

4.1.1 CA Loss

The main idea of CA Loss is based on the premise that
nearby pixels with similar features are usually grouped
into similar categories; therefore, this loss function fo-
cuses on an n × n area for a specific pixel. Additionally,
it employs the kernel method proposed in CRF Loss to
measure the similarity of visual features such as colors
and positions.

Kvis(i, j) = exp
(
−∥S(i)−S(j)∥2

2σ2
S

− ∥C(i)−C(j)∥2

2σ2
C

)
(1)

In the formula above, S(i) and C(i) represent the po-
sition and color of pixel i. σS and σC are hyperparame-
ters. The concept is that similar pixels should have sim-
ilar predictions, so the function Lca can be expressed as
follows:

D(i, j) = 1− PiPj − (1− Pi)(1− Pj) (2)

Lca = 1
M

(∑
i

1
Kd(i)

∑
j∈Kd(i)

Kvis(i, j)D(i, j)
)
(3)

D (i, j) calculates the probability that pixel i, j be-
longs to different classes. P(i, j) is the probability of
positive labels for pixel i, j. Kd(i) represents the n × n

2Conditional random field
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neighbors centered around pixel i. M is the total num-
ber of pixels. Through Lca, the model can quickly learn
from the entire image and produce relatively good pre-
dictions (P).

4.2 SS Loss

In this section, instead of using visual information such
as color and position, a feature map (F) and position are
utilized for the kernel exploitation method. By mim-
icking how humans detect objects and using higher se-
mantic information, it can help improve the detection
of camouflaged objects.

4.2.1 Covariance

The importance of each feature channel is determined
by its covariance with the model’s prediction and is cal-
culated only on classified pixels.

Sigi = cov(Fi, P ), i ∈ {1, . . . , C} (4)

Then, the top N channels are selected based on this
covariance to create a feature map with semantic infor-
mation. To focus on boundary areas, pixels are classi-
fied, and if the prediction is above 0.8, they are consid-
ered valid classes.

Ksem = exp
(
−∥S(i)−S(j)∥2

2σ2
S

− ∥F̂ (i)−F̂ (j)∥2

2σ2
C

)
(5)

Lss = wss · 1
M

∑
k

1
|Rk|

∑
(i,j)∈Rk

Ksem(i, j)D(i, j) (6)

Fi is the feature mapping of channel i. Rk represents
valid boundary areas, and wss is a hyperparameter that
increases with the number of epochs since the model has
not yet learned the displayed features well at the begin-
ning.As a result, Feature Guided Loss can be expressed
as the sum of both cost functions: Lft = Lca + Lss

4.3 Consistency Loss

Weakly supervised learning methods face challenges
in detecting camouflaged objects due to the high vi-
sual similarity between the foreground and background,
leading to inconsistent predictions. These methods do
not perform satisfactorily in complex conditions, and
self-supervised learning attempts to reduce this incon-
sistency by calculating the difference between the input
network representation and treating it as constraint loss.
Recently, weakly supervised methods have also utilized
a similar cost function to improve prediction accuracy.
However, there are still limitations to applying this cost
function in line-based weak supervision; one challenge
is that consistency and stability in the unit map are not
considered. In this context, two proposed consistency
functions are cross-view consistency and internal repre-
sentation consistency.

4.3.1 Cross-View (CV) Loss Function

A model that performs well in object detection should
be able to recognize the same objects in other images,
even after transformations have been applied. To ensure
this capability, cross-view loss is defined. For a neu-
ral network function fθ(·) with parameters , and some
transformations T (·), with input x, the ideal state is
defined as follows:

fθ(T (x)) = T (fθ(x)) (7)

The SSIM index is used to compare two images, and
the final cross-view loss function is defined as follows:

Lcv = 1
M

∑
(i,j)

(
(1− α)

1−SSIM(P(i,j),P̂(i,j))

2 + α|P(i,j) − P̂(i,j)|
)

(8)

α = 0.85, P and P̂ are the input prediction map and
its transformation, respectively. M is the total number
of pixels, and i, j are the indices of a pixel in each map.

4.3.2 Internal View (IV) Loss Function

The IV refers to the consistency of predictions within a
prediction map, where the model’s predictions should be
stable and reliable within the specific range and features
of an object. Near the boundaries, forcing the model to
predict with confidence can be misleading. To guide the
model toward confident predictions within the object,
entropy is used, and a soft indicator is employed to filter
out noisy predictions. The internal view consistency loss
function is defined as follows:

Pentropy =
∑

(i,j) (−P logP − (1− P ) log(1− P )) (9)

Liv = wiv · 1
|I−B| · Pentropy (10)

B is the set of all pixels close to the boundary, (i, j) ∈
I − B wiv is the weight of the cost function, and it is
typically set to 0.05 in practice. The entropy threshold
for pixels near the boundary is 0.5. Note that this cost
function is added in the final training stage when the
predictions are relatively accurate. Finally, we define
consistency loss as the sum of the two functions CV
and IV:

Lcst = Lcv + Liv

4.4 Final Objective Function

The final objective function includes supervision for
multiple outputs. For the main output, all introduced
cost functions, along with the partial cross-entropy func-
tion, are combined to apply stronger supervision to the
model.

Lpce = 1
N

∑
i∈P̂ (−yi log ŷi − (1− yi) log(1− ŷi))

(11)

It was observed that using the SS cost function did
not significantly improve the performance of the aux-
iliary outputs (Out1 to Out4). Additionally, the CV
function did not provide substantial improvements for
these outputs either. Therefore, to achieve a balance
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between efficiency and accuracy, it was decided to uti-
lize the auxiliary loss only through IV consistency and
Lca.

Liaux = Lipce + Lica + Liv(i = 1, 2, 3, 4) (12)
where Lix is the cost function applied for auxiliary

output i. Note that each output is sampled with two-
dimensional interpolation to match the input size. Fi-
nally, the overall objective function for the output is
defined as follows:

L = Lcst + Lft + Lpce +
∑n

i=1 BiL
i
aux (13)

5 Experiments

5.1 Dataset

The first dataset based on annotations for camouflaged
object detection (COD) is called S-COD, which we also
utilized. This dataset includes 3,040 images from the
COD10K training set and 1,000 images from the CAMO
training set, with the remainder reserved for testing.

5.2 Evaluation Metrics

We use four evaluation metrics: Mean Absolute Er-
ror (MAE)[18], Structure Measurement (Sm)[6], En-
hanced Measurement (Em)[7], and Weighted F Measure
(Fwβ)[1].

5.3 Implementation Details

In this method, the PyTorch deep learning library
was used for implementation, and experiments were
conducted on a powerful GeForce RTX 4090 GPU to
achieve greater speed and efficiency. During the training
phase, input images were prepared by applying trans-
formations such as horizontal flips, random cropping,
and resizing to 320×320 pixels to increase data diver-
sity and prevent overfitting. For model optimization, we
used the Stochastic Gradient Descent (SGD) algorithm
with a momentum of 0.9, weight decay of 5e-4, and a
triangular learning rate schedule with a maximum learn-
ing rate of 1e-3. The batch size was set to 16, and the
number of training epochs was 150, with model training
taking approximately 12 hours.

5.4 Result

We initially implemented the base architecture based
on the article[11] and trained it. Finally, We decided
to implement the changes that had improved the model
and to run another round of tests. According to the
various results obtained from multiple experiments, we
concluded that we should re-examine the changes that
improved the network more closely. In these changes,
the CBAM and TEM modules showed significant im-
pact; therefore, by combining these modules with the
base architecture and increasing the expansion rates and

Figure 8: First Experiment

contrast enhancement within the range of (2, 4, 6), we
arrived at a new architecture CTENet.

We conducted our experiments in two categories: the
first involved combining the new modules with the base
modules, and the second involved removing some of the
base modules and replacing them with new modules(
different experiments, see figure 9).

• First Experiment:

Contrast Enhancement: Three sub-modules of LCE
were placed in LCC with expansion rates of (2, 4, 6).
LSR: The third-level feature was given to this module.
TEM: The fourth-level feature was given to this mod-
ule.
CBAM: The fourth-level feature was given to this mod-
ule.
Since all results indicate an improvement in scribble la-
bel performance, we attempted to conduct subsequent
experiments using scribble labels (see figure 8).

Based on the previous experiments, numerous tests
were conducted, leading to the final experiment that
resulted in the proposed architecture CTENet7.

• Final Experiment

Contrast Enhancement: Three sub-modules of LCE
were placed in LCC with expansion rates of (2, 4, 6).
LSR3: This module was removed, and TEM was added.
TEM: The fourth-level feature was given to this
module.
EDB: Four features extracted from the network are
provided to this module.
CBAM: The fourth-level feature was given to this
module.

According to the last expriment, the results in Ta-
ble 1, 2 , 3 show growth in some evaluation metrics
compared to the base architecture. Enhancing tex-
ture is of higher importance in camouflage detection.
Therefore, we proposed an architecture named CTENet,

3logical semantic relationship
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Figure 9: A sample of result with different expriment

Table 1: comparison based on the dataset CAMO
Method CAMO

MAE S E Fw
SS 0.092 0.735 0.815 0.641

SCWS 0.104 0.718 0.812 0.614
CRNet 0.092 0.735 0.815 0.641
ours 0.095 0.735 0.824 0.646

Table 2: comparison based on the dataset
CHAMELEON

Method CHAMELEON
MAE S E Fw

SS 0.065 0.772 0.858 0.662
SCWS 0.055 0.785 0.890 0.683
CRNet 0.046 0.818 0.897 0.744
ours 0.046 0.814 0.896 0.736

Table 3: comparison based on the dataset COD10K
Method COD10K

MAE S E Fw
SS 0.065 0.678 0.764 0.469

SCWS 0.057 0.716 0.821 0.546
CRNet 0.049 0.733 0.832 0.469
ours 0.05 0.731 0.834 0.575

which considers the significance of structure and con-
trast alongside texture to potentially outperform cur-
rent models. The findings indicate that texture en-
hancement plays a crucial role in camouflage detection,
as it provides richer information about the local fea-
tures of objects, aiding in better differentiation between
the target and background. Additionally, the presence
of the boundary enhancement module can help identify
potential camouflage areas. Results presented in the
latest article on weakly supervised camouflage detec-
tion demonstrate significant advancements in this field,
not only regarding detection accuracy but also in the
models’ ability to handle existing challenges.

6 Conclusion

In response to the challenges of determining the am-
biguous boundaries of camouflaged objects and back-
grounds, a new architecture called CTENet has been
proposed for camouflage detection in images. This ar-
chitecture consists of four key modules: the Contrast
Enhancement Module (LCC), the Texture Enhance-
ment Module (TEM), the Object Boundary Enhance-
ment Module (EDB), and the Channel Attention Mod-
ule (CBAM). The proposed network first learns low-
level features to extend lines into broader areas and
then determines the actual foreground and background
by analyzing texture using logically related semantic in-
formation. This network was trained on generated data
(S-COD), resulting in improved performance compared
to the baseline architecture.These results demonstrate
the success of the CTENet architecture in enhancing
camouflage detection accuracy in images.

7 Discussion

Future work will focus on producing a larger dataset
for model training, We will also explore advanced at-
tention mechanisms to improve feature prioritization in
camouflage detection. Further examination of edge de-
tection algorithms is essential to refine our ability to
identify subtle boundaries in camouflaged objects. Ad-
ditionally, we aim to investigate the application of met-
ric learning techniques to enhance classification accu-
racy. The integration of quantum methods with detec-
tion algorithms presents an innovative approach that
could improve processing efficiency. Lastly, developing
techniques for camouflage detection in video will be cru-
cial for real-time applications in military and security
contexts.
Comments reviews: Most of the computational re-
sources in this architecture are used in the backbone,
and other modules (except for the backbone) do not
require significant resources. Therefore, if MobileNet
or EfficientNet is used in the backbone, this architec-
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ture can be easily utilized in edge devices.To extend
CTENet to video and real-time applications, object
tracking ideas can be incorporated into this architec-
ture so that a camouflaged object can be tracked in
subsequent frames after being detected.
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