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Abstract 

Oceanographic observations and models are 

imperfect, and therefore our simulations of the 

ocean are not completely realistic. Direct 

measurements of oceanic processes and 

properties are limited by sampling rates, while 

ocean models are limited by finite resolution, 

high viscosity and diffusion coefficients are 

needed in solving equations. This study instead 

evaluated deep learning methods, which focused 

on data as opposed to equations. There are used 

particular types of deep learning algorithms and 

hybrid models consists of artificial neural 

network (ANN), convolution neural network 

(CNN), long short-term memory network 

(LSTM) and etc., to make more accurate the 

prediction of ocean-atmospheric characteristics 

include; sea surface wind, sea surface 

temperature (SST), sea surface salinity (SSS) and 

sea surface height (SSH). Ocean time series data 

available in the databases preprocessed to achieve 

an appropriate pattern and predict factors for 

short-term in the oceanic area. The total 

framework of the simulation includes six main 

stages. At first, the data have been collected and 

prepared, and then trained the model. Moreover, 

the proposed hybrid model implemented and 

validated to predict the studied parameter for 

short-term (a period of several hours to several 

days) in several geographical points in a local 

Sea. Finally, the model performance evaluated 

and compared the accuracy through MAE, MSE 

and RMSE criteria. Results show high accuracy 
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for predicted sea surface temperature and salinity 

in all selected points. 
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1   Introduction  

In recent years, many researches have been 

focused on the application of various deep 

learning techniques, including combined 

methods in atmospheric and oceanic sciences, to 

predict the key parameters of ocean water, and 

now these methods are being developed and will 

be replaced with many traditional methods in the 

near future [14]. Therefore, studying and 

investigating new techniques based on deep 

learning can produce new knowledge and insight 

in this direction. The main goal of this research is 

to provide and develop a quick, low-cost and 

practical solution to increase the accuracy of 

predicting marine parameters through deep 

learning. In other words, we want to validate a 

new deep learning method for a more accurate 

and practical prediction of physical 

characteristics of the sea water. More accurate 

marine forecasting methods can directly and 

indirectly have a significant impact on the 

exploration, exploitation and extraction of oil and 

gas resources from the sea, fisheries, weather and 
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climate forecasts, the assessment and protection 

of marine environment and ecosystems, as well 

as the better understanding of sea currents and 

ocean circulations. Both data from observations 

and ocean models lack information at small and 

fast scales. Moreover, methods are needed to 

extract information, extrapolate, or upscale 

existing oceanographic data sets, to account for 

or represent unresolved physical processes [1]. 

Previous numerical and statistical models often 

do not have the necessary accuracy, in which 

other factors should also be considered. For 

example, to predict the wind speed using 

numerical or general circulation models (GCMs), 

other meteorological data such as atmospheric 

pressure, temperature, humidity, dew point, etc. 

are needed, or to estimate the sea surface level, 

some other factors such as evaporation, 

precipitation, and the in and out flow rivers 

should also be considered [6]. So, we need some 

other methods to make our ocean data more 

realistic and complete to achieve a more accurate 

and closer understanding of the real oceans. 

Scientists have traditionally approached this 

problem in a pen-and-paper style, considering 

physical theories and mechanisms [1]. However, 

in the methods based on deep learning, without 

the need for any other additional parameters, it is 

possible to provide predictions for the future with 

appropriate accuracy only by training the data of 

the past time [6]. This type of neural network 

works well even if ocean data are limited to a 

particular region and has recently been used in 

various research fields [3], [6], [9], [10], [11], 

[12], [13], that indicated an increase in prediction 

accuracy. The purpose of hybrid Deep Learning 

models is to obtain an optimal forecasting 

performance. By using the combined method, it 

is possible to maximize the information, integrate 

the information of the models, and improve 

accuracy of the predictions [2]. In this paper, we 

intend to adopt a suitable approach to predict each 

of the atmospheric-oceanic parameters by 

comparing and reviewing existing deep learning 

models. 

 

 

 

2    Methods of investigation 

Data collecting is the first step in all deep learning 

methods. There are some typical databases used 

in the previous studies include: 

Optimized and Interpolated Sea Surface 

Temperature (OISST) data provided by the US 

National Oceanic and Atmospheric 

Administration (NOAA) includes the daily, 

weekly and monthly mean SST datasets, which is 

produced by an advanced radiometer with very 

high resolution. The daily OISST database covers 

global oceans from 75.89°S to 89.75°N and from 

0.25°E to 359.25°E. This data has a spatial 

resolution of 0.25° x 0.25°. OISST weekly and 

monthly data cover from 89.5°S to 89.5°N and 

from 0.5°E to 359.5°E with a spatial resolution of 

1° × 1°.  

UK Hadley Center for Sea Surface Temperature 

and Sea Ice Data, which provides monthly 

datasets with 1° × 1° spatial resolution also used. 

This center analyzes and replicates the 

observations obtained from the global 

communication system. 

Remote Sensing Systems (RSS) database which 

provide global and daily SSS data using the 

SMAP satellite by the average of eight days of 

salinity with a spatial resolution of 0.25° × 0.25° 

(with an effective spatial resolution of 

approximately 40 km). The SMAP satellite was 

launched by the National Aeronautics and Space 

Administration (NASA), which is capable of 

simultaneously monitoring soil moisture and SSS 

globally. 

The Archiving, Validation and Interpretation of 

Satellite Oceanographic data (AVISO) captures 

and integrates sea surface height (SSH) data from 

multiple satellites. These data have a spatial 

resolution of 0.25° × 0.25° with a monthly time 

resolution. 

These reanalyzed data are presented by the 

Copernicus Marine Environment Monitoring 

Service (CMEMS) for quality control. 

ECMWF Reanalysis v5 (ERA5) is the fifth 

generation ECMWF atmospheric reanalysis of 

the global climate covering the period from 

January 1940 to present. ERA5 is produced by the 
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Copernicus Climate Change Service (C3S) at 

ECMWF. ERA5 provides hourly estimates of 

wind. The data cover the Earth on a 31km grid 

and resolve the atmosphere using 137 levels from 

the surface up to a height of 80km. ERA5 

includes information about uncertainties for all 

variables at reduced spatial and temporal 

resolutions. 

At the second step, collected data should be 

preprocessed, which follows with two phases; 

data cleansing and standardization. In order to 

store, read, writing and standardizing the data 

which is consist of several dimensions (time, 

longitude and latitude) and several variables 

(SST, SSS, SSH and wind), there is required a 

reliable and flexible data structure named Netcdf 

in order to store the multidimensional data. Each 

of the datasets belongs to a geographical area and 

has a significant resolution which the model is 

grided accordingly. A spherical coordinate system 

also used, which includes longitude and latitude. 

Before training models, datasets must be pre-

processed. The input data contain more than one 

variable with different scales and units. 

Differences in the scale of the input variables may 

increase the difficulty of the prediction and make 

the model unstable and result in adverse 

performance during the training phase. 

Therefore, standardization is required to make the 

same scales of all features, and to be avoided any 

bias in the model. The mathematical relationship 

of standardization shown as: 

(1)          𝑍𝑖,𝑗 =  
𝑥𝑖,𝑗−𝜇𝑗

𝜎𝑗
     

            𝑖 = 1, … , 𝑛        𝑗 = 1, … , 𝑚                         

 

In the above relationship, n is the number of data 

and m is the number of features or variables, 

which shows that standardization is done for each 

feature separately and for all data. The mean 

value of each feature µ and the standard deviation 

of each feature σ are calculated from the 

following relationships, respectively:                  

(2)       𝜇 =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
         

(3)      𝜎 =  √∑ (𝑥𝑖−𝜇)2𝑁
𝑖=1

𝑁
                  

At the third step, we are represented the structures 

and algorithms of deep learning models. Models 

should be writing with an appropriate 

Programming Language and implement. Python 

programming language by using open-source 

tools and libraries (tKinter, Numpy, SKLearn, 

Pickle, Shutil, Keras, TensorFlow, Matplotlib) 

can access Netcdf data. Netcdf data has a very 

complex structure and is not suitable for data 

mining and machine learning. However, Python 

has made it possible to convert this type of data 

into the standard format of data engineering 

called Data Frame. In the following, the different 

types of deep learning algorithms are presented 

and described: 

 

2.1    Convolution Neural Network (CNN)  

CNN is a subset of Deep Feed-Forward Artificial 

Neural Networks [7]. The CNN models were 

originally developed for image classification. 

These models accept two-dimensional input 

image with color channels to learn its features. 

Such models are deep learning methods and have 

achieved tremendous success in the past. A one-

dimensional version of CNN is termed as 1D 

CNN. The 1D CNN is mainly applied to one-

dimensional sequence of data. It extracts 

important features from the input sequence data 

and maps the internal feature of the sequence. The 

1D CNN has been successfully applied for time 

series and fixed-length signal data analysis such 

as audio recordings and natural language 

processing. Figure 1 shows the CNN model 

architecture. The CNN consist of a 1D 

convolutional layer, a pooling layer, a flatten 

layer, and an output layer. The input signal can be 

either multivariate or univariate time series. The 

width of the time series depends on the number of 

features K and the length N of the series. The 

convolutional filters have the same width as the 

width of the time series but their lengths may be 

different. The filters are designed to move in one 

direction while performing a convolutive 

operation from the starting point of the time series 

to its endpoint. The convolutional layer consists 

of new filtered times vectors whose numbers 
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depend on the number of convolution kernels. 

This layer also captures the features of the initial 

time series. The next stage involves the pooling 

of each time series vector of the convolutional 

layer to form new vectors. The layer responsible 

for pooling is termed as the pooling layer. The 

vectors from the pooling layer are passed to the 

flattened layer or fully connected layer [6]. In the 

present case, the output of the flattened layer is 

passed to the LSTM neural network. 

 

 

Figure 1: The CNN model architecture [6]. 

 

2.2    Long Short-Term Memory (LSTM)  

LSTM is a subclass of RNN model which is 

formed by adding a memory cell into the hidden 

layer to control the memory information of the 

time series [6]. It consists of three different 

control gates namely, forget, input, and output. 

The state of the memory cell of the LSTM is 

controlled by two of these gates. The forget gate 

indicates how much memory of the last moment 

can be saved while the input gate determines how 

much input of the current moment can be saved 

and also controls the fusion of information and 

stimulus. The output gate is mainly used to 

control the amount of information that is sent for 

cell status. The transmitted information passes 

through the controllable gates to different cells in 

the hidden layer. This enables the control of the 

memory and forgetting extent of the prior and 

current information. In contrast to the RNN, the 

LSTM has the long-term memory function and 

does not have the problem of gradient 

disappearance. Figure 2 shows the structure of the 

LSTM network. 

 

Figure 2: LSTM diagram [6]. 

 

𝜎 is the sigmoid function shown in Equation (4)-

(6) and has a value between zero and one, where 

0 indicates that nothing passes while 1 means 

everything passes. The hyperbolic tangent 

function is used to overcome the problem of 

gradient disappearance. The subscripts i, f and o 

represent the input, forgetting, and output 

respectively, and the subscript t represents the 

time step- index. The equations are given as 

follows; 

 

(4)          𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)                

(5)          𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)                           

(6)         𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)   

(7)          �̃�𝑡 = 𝜎ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)        

(8)          𝑐𝑡 = 𝑓𝑡ʘ𝑐𝑡−1 + 𝑖𝑡ʘ�̃�𝑡                      

(9)              ℎ𝑡 = 𝑜𝑡ʘ𝜎ℎ(𝑐𝑡)                              

 

where 𝑊𝑓, 𝑊𝑖, 𝑊𝑜 and 𝑊𝑐 are matrices 

representing the weights of the forgetting gate, 

input gate, output gate and the memory cell; 

respectively. 𝑈𝑓 , 𝑈𝑖, 𝑈𝑜, 𝑈𝑐 are the matrices 

representing the weights of the recurrent 

connections of the forgetting gate, input gate, 

output gate and the memory cell; respectively. 𝑥𝑡 

denotes the input vector to the LSTM network at 

a time step t, 𝑓𝑡 denotes the forget gate's 

activation vector, 𝑖𝑡 represents the input gate's 
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activation vector, and 𝑜𝑡 is the output gate's 

activation vector, ʘ represents the element wise 

multiplication. �̃�𝑡 and 𝑐𝑡 represent the cell input 

activation vector and cell state activation vector. 

Here, the 𝑏𝑓, 𝑏𝑖, 𝑏𝑜 and 𝑏𝑐 represent the forgetting 

gate bias vector, input gate bias vector, output 

gate bias vector, and memory cell bias vector; 

respectively. The sigmoid function 𝜎(𝑥) and the 

hyperbolic tangent function 𝜎ℎ(𝑥) are defined as:   

 

(10)           𝜎(𝑥) =
1

1+𝑒−𝑥
                

 

(11)           𝜎ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
       

 

Bidirectional Long Short-Term Memory 

(BLSTM) achieve this by presenting the input 

data forwards and backwards to two separate 

hidden layers, both of which are connected to the 

same output layer (see Figure 3). 

 

 

Figure 3: Bidirectional LSTM layer [7]. 

 

2.3    Hybrid 1D CNN-BLSTM Model 

CNN-BLSTM is presented for the time series 

prediction as shown in Figure 4. The CNN will 

extract important high-level features from the 

input time series. These features will be sent as 

input to the BLSTM to support prediction after 

pooling and flattening. The convolution layer will 

be initialized with 32 different kernels of the 

same size (3 times 3) and the output of this layer 

will be passed to the ReLU activation function. 

To reduce the sensitivity of feature map to 

location, the max pooling will be employed to 

select the maximum value and hence reducing the 

size of feature maps. An BLSTM of 32 output 

units will be used. The network output will be 

obtained from the dense output layer. It is 

noteworthy to know that the output of the 

network could be increased to multiple feature 

prediction. 

 

 

Figure 4: The hybrid CNN-BLSTM model 

architecture [5]. 

 

 

2.4    Recurrent Neural Networks (RNN)  

Traditional neural networks usually assume that 

all inputs (or outputs) are independent of each 

other. However, in the process of practical 

operation, there is a dependency between the 

current state of each node and the previous steps, 

and this is the basic assumption of expanded 

RNN. The signal feedback structure of the 

recurrent neural networks (RNN) adopts the 

output state of the network at the time of K 

associated with the historical signal before the 

time of K, in order for it to have dynamic 

characteristics and a memory capability. 

However, RNNs are challenged by the vanishing 

gradient problem, where the gradient decreases 

over time. Moreover, the RNN may also suffer 

from the gradient explosion problem. Although 

many techniques have been developed to address 
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this issue, it remains difficult to obtain long-term 

memory. 

 

2.5 Gated Recurrent Unit (GRU)  

Due to its complex internal structure, the training 

of the LSTM network is the very time-consuming 

and the LSTM exhibits a poor real-time 

capability. With the rapid growth in demand for 

speech-to-text applications, computing resources 

are currently not even keeping up with its needs. 

To solve this problem, Gated Recurrent Unit 

(GRU) network model was proposed on the basis 

of the original LSTM model. The forget gate and 

the input gate are combined into a single update 

gate, and the cell state, the hidden state and other 

changes are also mixed. The GRU neural network 

has been successfully applied to sequential or 

temporal data. The GRU has a simpler structure 

than the LSTM; nevertheless, its performance is 

comparable with the LSTM. The GRU even 

outperforms LSTM but has a lower complexity 

and faster convergence. However, the GRU has a 

serial structure, which makes parallel 

computation hard to implement. 

 

2.6    Simple Recurrent Unit (SRU)  

The common feature of LSTM and GRU is that 

the calculation of the gate of each time step 

depends on the output of the previous time step, 

which leads to a high serial dependence of the 

network. Also, it is difficult to speed up the 

calculation by parallel calculation. To solve this 

problem, the Simple Recurrent Unit (SRU) 

network was proposed. The main design feature 

of the SRU is that the gate calculation depends 

only on the current input cycle. In this way, only 

the point-by-point matrix multiplication of the 

model depends on the previous time step. Thus, 

the network can be configured in parallel. In 

addition, the SRU also reduces the number of 

gates, and the design only features the forget gate 

and the reset gate. In this way, the calculation 

efficiency of SRU neural network is higher than 

that of LSTM and GRU. 

At the fourth step, dataset separated into two 

parts: the training and the test data. In order to 

train each model, a separation rate of 80% is used 

for the test and training data. This means that 20% 

of the data is used for testing and the remaining 

80% for training. Then, the model keeps the data 

as a series of points in its memory, fit a curve 

around these points and learns the pattern of each 

variable fluctuations at these particular points. 

During the training, model will be able to produce 

output according to the inputs. This procedure 

will be occurring in the model by auto-regression 

technique. There is a correlation between the past, 

present and the future time in the dataset. There 

are several windows through the auto-regression, 

called Sliding Window, which can estimate data 

for the future by looking at the past time data. The 

auto-regression approach is shown in the figure 5. 

 

 

Figure 5: Auto-regression approach in training. 

 

At the fifth step, model have implemented for a 

short period of time, and validated for some 

geographical selected points in the oceanic area 

(Figure 6). 

 

 

Figure 6: Oceans of the earth. 

 

364



Pourkarimian et.al. Applications of Deep                                 Amirkabir University of Technology, October 23-24, 2024 

 

At the final step, several performance indices will 

be used to comprehensively evaluate the 

forecasting capabilities of the model. The 

performance indices include MAE, MSE, and 

RMSE and 𝑅2. R-Squared (𝑅2) is an important 

statistical measure of fit which indicates how 

much variation of a dependent variable is 

explained by the independent variable(s) in a 

regression model. It ranges from 0 to 1, where the 

best fit closes to 1.  The mathematical expression 

of the aforementioned indices is given as follows: 

 

(12)             𝑀𝑆𝐸 =  1 𝑁⁄ ∑ (𝑦ʹ𝑛
𝑁
𝑛=1 − 𝑦𝑛)2                  

(13)             𝑀𝐴𝐸 =  1 𝑁⁄ ∑ |𝑦ʹ𝑛 − 𝑦𝑛|𝑁
𝑛=1    

(14)            𝑅𝑀𝑆𝐸 = √1 𝑁⁄ ∑ (𝑦ʹ𝑛
𝑁
𝑛=1 − 𝑦𝑛)               

(15)            𝑅2 = 1 −
∑

(𝑦′(𝑛)
−𝑦(𝑛))

2

𝑁
𝑁
𝑛=1

∑
(𝑦(𝑛)−�̅�)

2

𝑁
𝑁
𝑛=1

 

 

In above relationships, N is the number of test 

data, y is the output of real data, and yʹ is the 

output of the model. After determining the error 

percentage, the research questions will be 

answered and the research hypotheses will be 

finally rejected or confirmed according to the 

obtained results. 

 

3    Results & Discussion 

In this section, we evaluate and review the results 

obtained from the different deep learning 

methods. 

In [4], the authors propose DeepOcean, a deep 

learning framework for spatio-temporal ocean 

sensing data prediction, which consists of a 

generative module and a prediction module. They 

implement the generative module with a multi-

layer perceptron (MLP) to capture the spatial 

dependencies and construct high-resolution data 

based on sparse observations. The prediction 

module is implemented with their proposed 

Multivariate Convolutional LSTM (MVC-

LSTM) neural network, which captures both the 

spatio-temporal dependencies and the 

interactions of different oceanographic features 

for prediction. They evaluate the effectiveness of 

DeepOcean with Argo data, where the proposed 

framework outperforms fifteen state-of-art 

baselines in terms of accuracy. Table 1 and 2 

show the detail evaluation results. 

 

Table 1: Evaluations of different methods in 

predicting SST [4]. 

 

 

Table 2: Evaluations of different methods in 

predicting SSS [4]. 

 

 

They display the evaluations of these methods 

and the time steps they need in Fig. 7, 

respectively. They choose different time step 

lengths for different methods for comparison 

because different model attains its best 

performance with the lowest RMSE at different 

time step length. 

In [8], the authors have developed an optimized 

Simple Recurrent Unit (SRU) deep network for 

the short- to medium-term prediction of the 

SSHA using Archiving Validation and 

International of Satellites Oceanographic 

(AVISO) data. Detailed experiments were carried 

out in the Bohai Sea to evaluate the proposed 

model and it was demonstrated that the proposed 

framework (1) outperformed significantly the 

current deep learning methods such as the BP 

(Backpropagation), the RNN (Recurrent Neural 

Network), the LSTM (Long Short-term 

Memory), and the GRU (Gated Recurrent Unit) 

algorithms for 1, 5, 20, and 300-day prediction; 
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(2) can predict the short-term trend in the SSHA 

(for the next day or 2 days) in real time; and (3) 

achieves medium-term prediction in seconds for 

the next 5–20 days and shows great potential for 

applications requiring medium- to long-term 

predictions (Table 3 to 5). 

 

Figure 7: Comparison of MVC-LSTM and other 

baselines with different time step length using 

RMSE. The smaller the better [4]. 

 

 

Table 3: The experimental results of 1 and 5-day 

prediction of SSH [8]. 

 

 

 

Table 4: The experimental results of 20-day 

prediction of SSH [8]. 

 

Table 5: The experimental results of 300-day 

prediction of SSH [8]. 

 

 

In [5], the authors proposed a deep-learning-

based wind speed forecasting model based on 

CNNs and BLSTM. The simulation results 

illustrate the accurate and reliable performance of 

the proposed method. Also, it is shown that the 

performance of the model in forecasting the U 

characteristics of the wind is relatively better than 

V characteristics (Figure 8 & 9). Table 6 shows 

the evaluation metrics and the training time for 

the prediction methods. 

 

Table 6: Evaluation metrics for prediction of 

wind [5]. 

 

 

 

Figure 8: The regression diagram of the U 

values for a period of three days [5]. 
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Figure 9. The regression diagram of the V values 

for a period of three days [5]. 

 

4    Conclusion 

From the presented results and evaluations, it can 

be concluded that the deep learning hybrid 

models have acceptable performance in 

predicting ocean parameters. It should be noted 

that due to the periodic pattern and alternative 

nature of sea surface temperature and salinity, it 

is very convenient and easier for the models to 

predict these oceanic parameters relative to the 

sea surface wind and water level fluctuations, 

which are very variable and irregular in nature. 

 

References 

[1] Bolton, T., & Zanna, L. (2019). Applications 

of deep learning to ocean data inference and 

subgrid parameterization. Journal of Advances in 

Modeling Earth Systems, 11(1), 376-399. 

[2] Chang, W. Y. (2014). A literature review of 

wind forecasting methods. Journal of Power and 

Energy Engineering, 2(04), 161. 

[3] Du, S., Li, T., Yang, Y., &Horng, S. J. (2019). 

Deep air quality forecasting using hybrid deep 

learning framework. IEEE Transactions on 

Knowledge and Data Engineering, 33(6), 2412-

2424. 

[4] Gou, Yu, et al. "DeepOcean: A general deep 

learning framework for spatio-temporal ocean 

sensing data prediction." IEEE access 8 (2020): 

79192-79202. 

[5] Khalilabadi, Mohammad Reza. "Wind field 

forecasting using a novel method based on 

convolutional neural networks and bidirectional 

LSTM." Ships and Offshore Structures 19.7 

(2024): 892-900. 

[6] Lawal, A., Rehman, S., Alhems, L. M., 

&Alam, M. M. (2021). Wind speed prediction 

using hybrid 1D CNN and BLSTM network. 

IEEE Access, 9, 156672-156679. 

[7] Maalej, R., & Kherallah, M. (2018, 

November). Convolutional neural network and 

BLSTM for offline Arabic handwriting 

recognition. In 2018 International Arab 

conference on information technology (ACIT) 

(pp. 1-6). IEEE. 

[8] Ning, Pengfei, et al. "Short-to medium-term 

Sea surface height prediction in the bohai Sea 

using an optimized simple recurrent unit deep 

network." Frontiers in Marine Science 8 (2021): 

672280. 

[9] Passricha, V., & Aggarwal, R. K. (2019). A 

hybrid of deep CNN and bidirectional LSTM for 

automatic speech recognition. Journal of 

Intelligent Systems, 29(1), 1261-1274. 

[10] Shao, Y. T., & Chou, K. C. (2020). 

pLoc_Deep-mAnimal: a novel deep CNN-

BLSTM network to predict subcellular 

localization of animal proteins. Natural Science, 

12(5), 281-291. 

[11] Shen, Q., Wang, Z., & Sun, Y. (2017). 

Sentiment analysis of movie reviews based on 

cnn-blstm. In Intelligence Science I: Second IFIP 

TC 12 International Conference, ICIS 2017, 

Shanghai, China, October 25-28, 2017, 

Proceedings 2 (pp. 164-171). Springer 

International Publishing. 

[12] Xia, T., Song, Y., Zheng, Y., Pan, E., & Xi, 

L. (2020). An ensemble framework based on 

convolutional bi-directional LSTM with multiple 

time windows for remaining useful life 

estimation. Computers in Industry, 115, 103182. 

[13] Xiong, W., Wu, L., Alleva, F., Droppo, J., 

Huang, X., &Stolcke, A. (2018, April). The 

Microsoft 2017 conversational speech 

recognition system. In 2018 IEEE international 

367



The 1st International Conference on Machine Learning and Knowledge Discovery                                         MLKD 2024 

conference on acoustics, speech and signal 

processing (ICASSP) (pp. 5934-5938). IEEE. 

[14] Zheng, G., Li, X., Zhang, R. H., & Liu, B. 

(2020). Purely satellite data–driven deep learning 

forecast of complicated tropical instability waves. 

Science advances, 6(29), eaba1482. 

 

 

  

 

368


	Session 4A
	Applications of Deep Learning to Predict Ocean-Atmospheric Characteristics (Atefeh Pourkarimian, Mahdi Mohammad Mahdizadeh, Mohammad Reza Khalilabadi)


