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Abstract

In order to provide effective treatment and manage-
ment, early detection of Alzheimer’s disease is crucial.
This study investigates the potential of deep learning
models to identify early signs of Alzheimer’s-like behav-
ior using sensor data collected in a smart home environ-
ment. We employed four deep learning architectures:
GRU, LSTM, Bidirectional LSTM, and Conv1D, to dis-
tinguish between normal activity patterns and those
indicative of Alzheimer’s-like behavior. However, the
results showed that recurrent neural networks (GRU,
LSTM, and Bidirectional LSTM) performed better than
the biggest convolutional model (ConvlD) due to their
capability in capturing temporal dependencies within
sensor data more accurately than any other model. The
Bidirectional LSTM had an excellent ROC AUC score
suggesting it was capable of taking information from
both previous states as well as future ones into account
which made it very efficient in detecting Alzheimer’s
disease. These findings indicate that sensor-based data
analysis has the potential for developing non-invasive
continuous monitoring systems capable of supporting
early diagnosis, improving care and perhaps even bet-
ter management strategies for this condition over the
long term. It is necessary to conduct further research
with a view of refining deep learning models and de-
signing sophisticated systems for Alzheimer’s detection
in real-world smart home settings.
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1 Introduction

Due to the aging of the population worldwide, more
elderly suffer from Alzheimer’s disease [1]. Alzheimer’s
disease is known as one of the most well-known diseases
in the elderly, which is a neurological and irreversible
brain disorder that slowly destroys memory, the ability
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to think, and finally the ability to perform even basic
daily tasks [2]. They may also have difficulty communi-
cating with others. All of these barriers affect patients’
ability to complete daily activities, reduce their quality
of life, and force them to seek help from others.
Alzheimer’s disease does not allow a person to do daily
activities, that’s why a caregiver is needed who is a
member of the family or friends and has the most
connection and help to the sick person.
Time-consuming documentation of patients’ activities
is one of the important tasks of caregivers, especially
in nursing homes for people with dementia. This
documentation should help to understand the stage of
disease the patients are in. There are methods that
allow access to digital nursing documents with online
tools where activities can be collected by checking
boxes next to a list of activities. Although such online
tools simplify the work of caregivers, they still have
to be done manually. To be in addition, there is a
possibility that due to the high workload, the staff will
neglect certain activities. A smart home equipped with
the Internet of Things and a dementia detection system
can help caregivers and doctors to obtain medical
history, life habits collect daily and change in daily
routine pattern of patients [3].

Cognitive diseases such as dementia must be detected
at an early stage so that early treatment is possible.
Current assessment methods rely mainly on questions
from questionnaires or face-to-face examinations that
depend on recall of events or brief snapshots of func-
tioning that may reflect a person’s normal functioning
status. show weak Also, clinical methods have limi-
tations such as episodic nature and the possibility of
biased reporting. The main motivation of our work
is that cognitive decline can be observed in the daily
activities and routines of an elderly person. Real-time
monitoring of activities performed by an elderly person
in a smart home will be useful for early detection of
such decline [4].

Daily activities of dementia patients can be well
recognized by sensors technology and machine learning
[3]. Today, various advanced technological advance-
ments in medicine have led to a rapid increase in
the elderly population worldwide, which in turn has
created a major problem in our society, namely the
increasing number of people suffering from dementia



[1]. The increase in life expectancy worldwide has
been accompanied by an unprecedented increase in the
incidence of dementia, with high socioeconomic costs
reaching $818 billion worldwide in 2015. However, its
prevalence may nearly triple by 2050 as the number
of people aged 65 and older with Alzheimer’s disease
increases, from 46.8 million to 131 million worldwide,
the majority of whom live in an institution [5]. In
recent years, special attention has been focused on
monitoring technologies for early intervention services
and ambulatory case management. Typical solutions
include physical assistance and remote monitoring.
Assistive living technologies have limited use in the
unobstructed diagnosis of activities of daily living
(ADL) [6]. These refer to self-care tasks, including
exercises that are performed daily and that the in-
dividual wishes to perform independently. Cognitive
impairment has life-threatening consequences on the
patient’s independence and quality of life.

ADLs fall into two clusters: those that involve tasks
central to regular daily existence, for example, eating,
dressing, and washing, are called essential ADLs, and
those that involve higher-level complex tasks, such as
using and interacting with tools, for example, planning
dinners, monitoring funds and using the phone, to
name a few [7]. TADL Cognitive diseases such as
dementia should be detected in the early stages so
that early treatment is possible. However, research
shows that 75 percent of dementia cases go unnoticed,
and many cases are only diagnosed when the disorder
reaches a moderate or advanced stage. The best
markers of cognitive decline may not necessarily be
determined by an individual’s performance at any
point in time, but rather by monitoring trends over
time and the variability of change over a period of time
[8]. The use of smart home technology can significantly
Support the lives of people with dementia. This type
of technology would also be useful for detecting signs
of dementia and alerting caregivers and physicians for
further diagnosis. Recent studies show that deviations
in activity patterns can be indicators of cognitive
decline, behavioral changes such as sleep disorder,
night waking, and inability to perform tasks can be in-
dicators of cognitive impairment [6] Current assessment
methods mainly rely on questions from questionnaires
or face-to-face examinations that recall Events or brief
snapshots of performance are dependent that may
understate an individual’s normal performance status.
Also, clinical methods have limitations such as episodic
nature and the possibility of biased reporting. The
main motivation of our work is that cognitive decline
can be observed in the daily activities and routines of
an elderly person. Real-time monitoring of activities
performed by an elderly person in a smart home
would be useful for early detection of such decline. In

machine learning, convolutional neural network (CNN)
is a class of deep and feedforward artificial neural
networks. Recently, CNNs have become popular due to
their ability to learn rich representations and capture
local dependence and spatial information of grain-level
patterns [9].

Therefore, there is a technology that can auto-
matically support Alzheimer’s patients in achieving
self-sufficiency in their daily lives. The need for an
efficient, dynamic, and friendly support system for
patients with Alzheimer’s disease is urgent. Such
technologies have been exploited in many fields, such as
monitoring, elderly fall detection, and human activity
detection. Therefore, identifying the behaviors and
interactions of people with their environment is very
important for the development of intelligent systems
[2].

Using modern technologies, active and assisted living
(AAL) systems offer innovative and cost-effective
solutions to increase the safety of residents in order to
increase the quality of life [10].

The smart home system has the ability to automatically
collect the required data from the person’s behavior
in daily activities through sensors installed around the
patient.

The Internet of Things, which connects smart phones
and monitoring devices, can provide security and
health for elderly citizens and caregivers. IoT-based
smart homes can automatically meet daily needs and
notify caregivers and relatives [11]. This research aims
to address these gaps by investigating the effective-
ness of deep learning models in detecting early signs
of Alzheimer’s-like behavior using a comprehensive
dataset of sensor data. Specifically, we aim to answer
the following research questions: Can deep learning
models effectively distinguish normal activity patterns
from those indicative of Alzheimer’s-like behavior using
sensor data collected in a smart home environment?
How do different deep learning architectures, such
as GRU, LSTM, Bidirectional LSTM, and ConvlD,
impact the accuracy and robustness of the detection
system?

By exploring these questions, this study aims to
contribute to the development of a more accessible,
non-invasive, and potentially more sensitive approach
to early Alzheimer’s disease detection. Specifically, we
introduce the innovative use of synthetic data simu-
lation to mimic Alzheimer’s-like behavior and assess
how various deep learning architectures can enhance
detection accuracy in smart home environments.
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2 Literature Review

2.1 Introduction

In this chapter, we will review a selection of research
exploring the diagnosis of Alzheimer’s disease using
various techniques, including traditional methods and
emerging Al-driven approaches. We will focus particu-
larly on studies utilizing sensor data and machine learn-
ing for early detection of cognitive decline and activity
recognition in smart home environments.

2.2 Alzheimer’s diagnosis using daily activities for
care

Accurate and early diagnosis of Alzheimer’s can play an
important role in improving the treatment and manage-
ment of this disease. The use of sensors such as motion,
audio, and visual sensors has been considered as a non-
invasive and non-destructive method for Alzheimer’s di-
agnosis.

The use of environmental sensors can reduce the costs
and treatment burden related to Alzheimer’s. By us-
ing these sensors, it is possible to continuously monitor
environmental indicators such as movement, sleep, and
daily activities. This information can help doctors in
the diagnosis, treatment, and management of the dis-
ease and, as a result, make better decisions and reduce
the costs and burden of treatment.

In 2019, Ting-Ying Li et al. [1] proposed a support sys-
tem that can rapidly estimate the likelihood of dementia
based on a 2—4-hour observation of a behavioral test per-
formed by an elderly person. This paper uses the Naive
Bayes algorithm to train the model, which is used to
quickly classify participants into two classes: ‘dementia’
and ‘nondementia.” The proposed system uses environ-
mental sensors instead of wearable sensors or cameras,
and the distance between two adjacent sensors is about
1.5 meters so that the elderly feel more comfortable dur-
ing monitoring. The sensors used in this article include
motion sensors, item sensors, door sensors, burner sen-
sors, hot water sensors, cold water sensors, temperature
sensors, and electricity consumption sensors for the en-
tire apartment. Passive infrared motion sensors (PIR)
are also installed in the corridor. CASAS and ZS senior
home datasets were used to evaluate the system’s per-
formance. The first dataset achieved 98.3% accuracy,
98.3% readability, and an AUC-ROC of 0.846. The sec-
ond dataset achieved 89.9% accuracy, 90% readability,
and an AUC-ROC of 0.921. Eight activities from the
“TADL” list were selected by a professional psycholo-
gist, including cleaning rooms, reading medication pre-
scriptions, writing greeting cards, watching news clips,
watering plants, answering the phone, baking cookies,
and choosing clothes.

Damla Arifoglu and colleagues in 2019 [12] used con-
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volutional neural networks (CNN) and recurrent neural
networks (RNN) for activity recognition. They utilized
one-dimensional and two-dimensional CNNs, with two-
dimensional CNNs together with an LSTM layer (long
short-term memory networks) also being tested. The
datasets used in this article are the Aruba dataset, in-
cluding activities such as preparing food, relaxing, eat-
ing, working, sleeping, washing dishes, bed to toilet, en-
tering the house, leaving the house, housekeeping, and
breathing, and the WSU dataset, including phone call,
hand washing, food preparation, eating and cleaning.
The Aruba dataset includes 224 days of data with 11
daily activities performed by a single user. The WSU
dataset consists of 5 activities performed by 20 students
and has normal and non-normal versions to reflect er-
rors. Their findings demonstrated that a twodimen-
sional CNN network achieved 89.67% accuracy, while
a two-dimensional CNN network with LSTM achieved
89.72% accuracy. HMM and HSMM models had the
lowest accuracy (77.90% and 77.98%, respectively).
Damla Arifoglu et al. in 2020 [6] presented a method
to detect abnormal behavior that results from cognitive
problems in the elderly. To address the lack of data,
they proposed a data generation method to simulate
abnormal behavior that reflects the cognitive status of
elderly people with dementia. They then used graph
convolutional networks (GCN) to detect activities and
identify abnormal cases. The dataset used in this pa-
per is obtained from the “Aruba test-bed” of CASAS
smart homes, containing information from 3 door sen-
sors, 31 motion sensors, and 5 temperature sensors over
224 days. However, they only used motion sensors and
doors in their study. This dataset includes 11 daily ac-
tivities, including those mentioned above, performed by
an adult, excluding any abnormal behavior. To evalu-
ate the model, measures such as precision, recall, overall
accuracy, and F-measure were used.

K. S. Gayathri et al. in 2015 [5] used Markov Logic
Network (MLN) for activity detection due to its abil-
ity to integrate common sense knowledge with a prob-
abilistic model, enhancing the system’s detection abil-
ity. To incorporate an efficient activity detection and
anomaly detection system in smart environments, the
usual activities of the occupants are modeled, and any
deviation from the activity model is recognized as ab-
normal. Their Hierarchical Activity Detection and
Anomaly Detection System for Dementia Care used a
standard smart home dataset provided by the UCI Ma-
chine Learning Repository. The sensors used in this
article include: a PIR sensor in the shower and sink, a
magnetic sensor on the kitchen screen in the main door,
refrigerator, and cabinet, a flush sensor in the closet in
the toilet, a pressure sensor in the chair and bed, and an
electric sensor in the microwave and toaster. Activities
used include: leaving the house, toileting, showering,



sleeping, breakfast, lunch, snack, leisure TV, and clean-
ing.

Chennai, INDIA and colleagues in 2020 [13] focused
on early detection of Alzheimer’s disease (MCI). They
adopted a predictive model based on short-term mem-
ory recurrent neural networks (RNN), achieving an av-
erage test accuracy of 77.5%.

A synthetic dataset representing real-life cogni-
tive/functional decline was obtained from simulation
observations of daily life activities of elderly people.
They proposed the use of new or existing algorithms
to extract contextual meaning and useful features (such
as calculating sleeping time, cooking time, and walking
speed) from raw sensor data. Their work explored the
tradeoffs between wearable sensors (which are more in-
trusive) and non-wearable sensors (such as motion sen-
sors and door contact sensors), which are less intrusive
and can monitor activities naturally. Santos Bringas et
al. in 2020 [14] used a convolutional neural network
(CNN) model to identify patterns that distinguish dif-
ferent stages of Alzheimer’s. They trained their deep
learning models using mobility data collected for pa-
tients in Santander (Spain). They achieved 90.91%
accuracy and 0.897 F1 score using their CNN-based
method.

Debraj De et al. in 2015 [15] addressed fine-grained
activity detection using multimodal wearable sensors,
including those worn on different body positions and
Bluetooth beacons placed in the environment. Their
solution exploits measurements of the environment and
the user’s location, combined with movements recorded
by accelerometers and gyroscopes. The proposed al-
gorithm is a two-level supervised classifier that oper-
ates on a server. In the first level, multi-sensor data
from wearables is collected and analyzed using a mod-
ified conditional random field (CRF)-based supervised
activity classifier. This classified activity status is then
combined across all wearables to decide the user’s final
activity status. They classified activities into four cate-
gories: locomotor activities (indoor walking, indoor run-
ning), semantic activities (using the refrigerator, clean-
ing dishes, cooking, sitting and eating, using the bath-
room sink), transitional activities (indoor to outside,
outside to inside, walking upstairs, walking downstairs),
and postural /stationary activities (just stand, lie on the
bed, sit on the bed, lie on the floor, sit on the floor, lie
on the couch, sit on the couch, and sit on the dresser).
The devices used include: Lumo Back, Lumo Lift,
Nike+, and Fitbit.

In 2020, Sara Casaccia et al. [9] presented a tool for
simulating the home environment with the capability to
analyze human movement patterns related to activities
of daily living (ADL) and model passive infrared (PIR)
sensor networks. They chose PIR sensors due to their
non-intrusive and non-contact nature, along with their

low cost. The tool is programmed in MATLAB and
includes a graphical interface allowing the developer to
change key simulation parameters. The researchers in-
stalled three wallmounted PIR sensors with a radius of
2 meters and a field of view (FoV) of 140 degrees: PIR1
in the kitchen, PIR2 in the bedroom, and PIR3 in the
bathroom. These sensors were used to detect people’s
wandering patterns. Their results show that a decision
tree (DT) algorithm is reliable for distinguishing normal
routes from stray routes detected by PIR sensor activa-
tion, obtaining an accuracy level of more than 95% using
a cross-validation approach. They also found that if the
house layout, sensor placement, or sensor characteristics
were changed, the classifier could not function properly.
While existing research has demonstrated promising
results in activity recognition and anomaly detection
using sensor data, it often relies on specific activity
sets, smaller datasets, and predominantly focuses on
wearable sensors, which can be inconvenient for users.
In contrast to this, our work utilizes a comprehensive
dataset, simulates Alzheimer’s-like patterns in a more
realistic way, and explores the potential of deep learning
models to learn from complex temporal patterns, which
are more likely to be indicative of cognitive decline. This
research is more focused on developing a practical, non-
invasive, and cost-effective system for detecting early
signs of Alzheimer’s disease, utilizing a large dataset
and various deep learning architectures.

2.3 Alzheimer’s diagnosis using medical screening

In 2019, Mostafa Amin-Naji et al. [16] developed
a method for Alzheimer’s disease diagnosis using a
Siamese Convolutional Neural Network (SCNN) with
three ResNet-34 branches to distinguish between AD
and NC. They used the OASIS dataset, which included
235 subjects, and achieved an accuracy of 98.72%. This
research utilizes deep learning for Alzheimer’s diagno-
sis based on brain imaging data, offering insights into
the potential of Al in identifying neurological changes
related to the disease. However, this method differs
significantly from our approach, which concentrates on
analyzing sensor data from everyday activities to detect
early signs of decline.

In 2018, Hiroki Fuse and colleagues [17] used brain
shape information to classify between healthy people
and people with Alzheimer’s disease, achieving 87.5%
accuracy using a support vector machine. This research
highlights the potential of using brain shape informa-
tion as a diagnostic marker for Alzheimer’s disease, but
it relies on detailed brain scans (MRI or CT). This ap-
proach differs from the non-invasive, unobtrusive nature
of the sensor-based methods explored in this paper.

In 2020, Dan Pan et al. [18] proposed a CNN-EL
approach to identify individuals with mild cognitive
impairment (MCI) or Alzheimer’s disease (AD) using

350



MRI. The combined CNN and EL approach successfully
captured early AD-related brain changes, demonstrat-
ing its potential in early diagnosis.

In 2023, Dr. Chamandeep Kaur et al. [19] proposed
a method combining transfer learning (TL) and deep
neural networks (DNN) to diagnose Alzheimer’s disease
(AD). They trained the model using an image dataset
from Kaggle, which includes images of different stages
of AD, achieving an accuracy of 99.32%. This research
utilizes the power of deep learning for image-based di-
agnosis of Alzheimer’s, but it differs greatly from our
approach that focuses on sensor-based analysis of activ-
ity patterns in a smart home environment.

In 2013, Rigel Mahmood et al. [20] developed a new
approach to classify AD using mathematical and image
processing techniques. Their approach analyzes MRI
scans utilizing diffeomorphism features that map from
one MRI to another. They trained a neural network us-
ing 230 MRI scans from the OASIS MRI database and
tested it on 457 MRIs, achieving close to a 90% accu-
racy in AD diagnosis and classification.

The techniques of advanced medical imaging process-
ing in this area are examined for the diagnosis of
Alzheimer’s Disease. Though these approaches provide
important information on the illness, they tend to be
very costly, need specialized instruments and do not fit
well for long-lasting monitoring or prompt identification
which is what we are striving for in our inquiry.

3 Methodology

In the era of big data, monitoring the activities of in-
dividuals, particularly the elderly, through various data
sources has become crucial. This research aims to de-
velop an efficient model for detecting Alzheimer’s-like
patterns in sensor data using different neural network
architectures. The primary objective is to enhance the
care of individuals globally by identifying Alzheimer’s-
like patterns in their sensor data records. Leveraging re-
cent advancements in deep learning, this study focuses
on the application of state-of-the-art neural networks to
accurately detect these patterns [21].

3.1 Data Description

The dataset used for this study is the Aruba dataset,
collected by the Center for Advanced Studies in Adap-
tive Systems (CASAS) at Washington State Univer-
sity [22][23]. This dataset includes time-series sensor
data from a smart home environment, specifically de-
signed to monitor the activities of residents, particu-
larly the elderly. The Aruba dataset comprises various
types of sensor data, including Passive Infrared (PIR)
binary sensory data, door sensors, and temperature sen-
sors. The data records the states of these sensors over
time, capturing the movements and activities within the
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smart home.

The dataset was collected and labeled by the CASAS
team, who are independent of this study’s research
team. This independence ensures an objective and unbi-
ased labeling process, enhancing the dataset’s reliability
and credibility for evaluating machine learning models.
Several studies have utilized the CASAS Aruba dataset
for different purposes. For instance, Gochoo et al.
(2017) focused on detecting travel patterns of a resident
living alone using PIR binary sensory data. Their ap-
proach involved analyzing the activation patterns of mo-
tion sensors to infer the resident’s movement within the
home [24]. In another study, Gochoo et al. (2018) and
MacHot et al. (2017) explored activity recognition by
converting temporal sensory events of each activity sam-
ple into images. These images were then fed into Deep
Convolutional Neural Networks (DCNN) for feature ex-
traction. The extracted features were subsequently used
for activity classification using Fully Connected Neural
Networks (FCNN). This method demonstrated the po-
tential of using image-based representations of sensor
data for accurate activity recognition [25][26].

The floor plan of the smart home, where the Aruba
dataset was collected, is shown below. This map illus-
trates the layout of various rooms and the placement of
sensors, including large motion sensors (Mxxx), small
motion sensors (Txxx), and door sensors (Dxxx).

For example, a typical entry in the dataset might look
like this: “2011-07-14 15:57:29.967596, M031, OFF,”
indicating the timestamp, sensor ID, and sensor state.
This entry signifies that at 15:57:29.967596 on July 14,
2011, the sensor with ID M031 was turned off. Such en-
tries help in tracking the state changes of various sensors
over time, providing valuable information for activity
recognition and pattern detection [27].
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Figure 1: Smart home floor plan in which Aruba dataset
is collected

3.1.1 Data Simulation

Simulating Alzheimer’s-like behavior in sensor data
is a critical step to evaluate the performance of our



model in detecting patterns indicative of Alzheimer’s in
smart home environments. While the simulation does
not represent actual Alzheimer’s patient behavior, it
provides a controlled framework for creating datasets
with characteristics resembling behavioral changes
observed in Alzheimer’s, such as repetitive actions and
reduced activity.

To construct the simulated dataset, we identified
sensors associated with repetitive behavior (e.g., M015,
MO019, M014, M024, M007, and M027) and reduced
activity (e.g., M017, M018, and M021). Synthetic data
was generated by modifying the frequency of sensor
activations. For sensors linked to repetitive actions, the
activation frequency was increased using a probabilistic
approach, drawing a frequency factor from a normal
distribution (mean: 1.5, standard deviation: 0.5). If
a sensor’s state was ‘ON;’ its activation was included
in the synthetic data with a probability proportional
to the frequency factor. Conversely, for sensors linked
to reduced activity, the activation frequency was
decreased using a normal distribution (mean: 0.5,
standard deviation: 0.2), reducing the likelihood of
activation.

The synthetic data generation process maintained
the structure of the original dataset, preserving times-
tamps, sensor IDs, and states to ensure compatibility
with downstream analysis and enhance data diversity
for training and evaluation purposes. For instance, an
entry such as “2011-07-14 15:57:29.967596, M031, OFF”
reflects a sensor state change at a specific timestamp.
We assigned a label of ‘1’ to denote Alzheimer’s-like
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Figure 2: The number of activity records for each sensor

behavior in the synthetic data, enabling supervised
learning. Additionally, action frequency for each sensor
was calculated over a 10-minute window by grouping
‘ON’ state occurrences. Sensor activity distributions
and label histograms were plotted to visualize the

impact of simulation, highlighting the introduced
changes and their alignment with Alzheimer’s-like
behavior patterns.

3.2 Data Preprocessing

Data preprocessing is one of the most important steps
in getting the sensor dataset ready for the detection
of Alzheimer’s disease using a machine-learning model.
The original dataset, which is recorded sensor reading
over some time, was loaded into a Pandas DataFrame
for manipulation. In the first instance, the data was
reduced to a manageable size when selecting the first
20,000 rows. The columns in the sensor data show the
date, time, sensor ID, and sensor state. A DateTime
column was generated from the date and time columns
to allow for time-based grouping and analysis [28].

3.2.1 Action Frequencies

To obtain the characteristics of Alzheimer’s disease, the
frequency of actions by each sensor was calculated. The
sensor data was filtered based on the ID of the sensor
and its state, which is 'ON’. A count of action concen-
trations was obtained by grouping data according to the
type of sensor and by time window (1 minute); in this
way, a time series of action concentrations for a specific
sensor was obtained.

Number of "ON’ states for sensor s in time window ¢

f(S,t) =

Total time window duration

3.2.2 Simulation of Alzheimer’s-like Behavior

The Alzheimer’s-like data was simulated by modify-
ing the normal data’s action frequencies. Specific sen-
sors were chosen to represent repetitive behavior or re-
duced activity, which are characteristic of Alzheimer’s
patients. These modifications were introduced using a
probabilistic approach.

For repetitive behavior, the action frequency was in-
creased by a factor sampled from a normal distribution
with a mean of 1.5 and a standard deviation of 0.5.
Conversely, for reduced activity, the action frequency
was decreased using a factor with a mean of 0.5 and
a standard deviation of 0.2. The normal distribution
N(u, o) used for these factors can be represented as:

Repetitive behavior factor ~ N(1.5,0.5)

Reduced activity factor ~ N(0.5,0.2)

These modifications generated a dataset representing
Alzheimer’s-like behavior, which was then merged with
the original normal data.
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3.2.3 Labelling and Transformation

The two datasets were thereafter labeled with a binary
classification target. Target 0 meant normal behavior,
while 1 meant Alzheimer’s-like behavior. One-hot en-
coding independent variables followed, so that our ma-
chine learning model could make optimal use of the cat-
egorical data contained in Sensor and State columns.

3.2.4 Sequence Generation

To work with sequential models, for example an LSTM
or GRU, the data was reshaped into sequences of fixed
length, that is, 60-time steps. Each sequence was la-
beled with respect to the last time step in the sequence.
This methodology contributes to the learning of tempo-
ral dependencies in sensor data.

3.3 Train-Test Split and Data Normalization

The data was then split into an 80/20 ratio for training
and testing, respectively. The training set was used to
fit the models, while the testing set was used to measure
their performance. Features were normalized as input to
make sure that while training the models, convergence
was obtained effectively regarding the classes present
in the training set. Missing values were replaced using
the mean of the respective feature to make the data
complete before model training.

All of this complicated preprocessing pipeline made the
data well-prepared to the point of training various kinds
of deep learning models for detection of Alzheimer’s.

y_test

X_train

y_train

X _test

Figure 3: Train-Test Split Dimensions
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3.4 Model Architectures

To detect Alzheimer’s-like patterns in the preprocessed
sensor data, we implemented and compared four differ-
ent deep learning architectures: Gated Recurrent Unit
(GRU), Long Short-Term Memory (LSTM), Bidirec-
tional LSTM, and 1D Convolutional Neural Network
(Conv1D). Each model was designed to capture tempo-
ral dependencies in the sequential sensor data, making
them suitable for this time-series classification task.

3.4.1 Gated Recurrent Unit (GRU) Model

The GRU model, first introduced by Cho et al. (2014),
is designed to capture long-term dependencies in se-
quential data with fewer parameters than LSTM. Our
GRU architecture consists of an input layer shaped to
match our sequence length and number of features, fol-
lowed by two GRU layers with 100 and 50 units re-
spectively, both using tanh activation. We incorporated
layer normalization and dropout (0.2) after each GRU
layer to improve training stability and prevent overfit-
ting. The final layer is a dense output layer with a single
unit and sigmoid activation for binary classification.
The GRU update equations are as follows:

zZt = U(Wz : [ht—lv‘rt])

re = o(W - [hy—1,m4])
ilt = tanh(W . [Tt * ht—17 .Z't])
ht :(I—Zt)*ht,1+zt*ilt

where z; is the update gate, r; is the reset gate, hy is
the candidate activation, and h; is the final activation

[29).

3.4.2 Long Short-Term Memory (LSTM) Model

The LSTM model, introduced by Hochreiter and
Schmidhuber [30], is designed to address the vanish-
ing gradient problem in RNNs. Our LSTM architecture
incorporates residual connections and batch normaliza-
tion. It begins with an input layer, followed by two
LSTM blocks with 100 and 50 units respectively, each
with tanh activation and a residual connection. Batch
normalization is applied after each block. A final LSTM
layer with 25 units and tanh activation is followed by a
dense output layer with sigmoid activation for classifi-
cation.
The LSTM update equations are:

fe=0(W;y - [hi—1, 2] + by)

iy = (Wi - [he—1, x¢] + b;)
o = U(Wo . [ht—la Q]t] + bO)
¢ = tanh(W,. - [hy—1, 2¢] + bc)



ct = fr*xci_1 +igx G
hy = oy x tanh(c;)

where f; is the forget gate, i; is the input gate, o; is the
output gate, ¢; is the cell input activation, ¢; is the cell
state, and h; is the hidden state.

3.4.3 Bidirectional LSTM Model

The Bidirectional LSTM model, as described by Schus-
ter and Paliwal [31], processes the input sequence in
both forward and backward directions. Our architec-
ture includes an attention mechanism. It starts with an
input layer, followed by two Bidirectional LSTM lay-
ers with 64 and 32 units respectively, both using ELU
activation. Dropout (0.3) is applied after each Bidirec-
tional LSTM layer. An attention layer is then applied,
followed by global average pooling and a final dense out-
put layer with sigmoid activation.

The attention mechanism is defined as:

et = tanh(Wphy + bp,)

o = softmax(es)

Cc = Zatht

where e; is the energy, o is the attention weight, and ¢
is the context vector.

3.4.4 1D Convolutional Neural Network (ConvlD)

The 1D Convolutional model, inspired by the work of Yu
and Koltun (2016), uses dilated convolutions to capture
long-range dependencies [32]. Our architecture begins
with an input layer, followed by two ConvlD blocks.
The first block has 64 filters with a kernel size of 3 and
dilation rate of 1, while the second has 32 filters with a
kernel size of 3 and dilation rate of 2. Both use SELU
activation and are followed by batch normalization and
max pooling. The output is then flattened before pass-
ing through a dense output layer with sigmoid activa-
tion.

The 1D convolution operation is defined as:

ylil = ali+r- k- wk]
k

where z is the input, w is the filter, r is the dilation
rate, and y is the output.

3.5 Model Training and Evaluation

In this section, we outline the training and evaluation
procedures for the four neural network architectures em-
ployed in our study: GRU, LSTM, Bidirectional LSTM,
and 1D Convolutional models. Each model was imple-
mented using the Keras framework and trained to pre-
dict sensor data labels in a binary classification task,
focusing on distinguishing between two classes.

3.6 Training Procedure

All models were trained using binary cross-entropy[35]
as the loss function:

BB =~ 3 (5 -log(pi) + (1~ ) log(1 — p1)

where N is the number of samples, y; is the true label,
and p; is the predicted probability.

The training process was carried out with a learning
rate of 0.001, using the Adam optimizer[33]. An expo-
nential learning rate decay was applied:

M=o decaylate(t/decay,steps)

where 7; is the learning rate at step ¢, 79 is the initial
learning rate, the decay rate was set to 0.96, and decay
steps to 100,000.

We trained the models for a maximum of 50 epochs
with a batch size of 32. Early stopping with a patience
of 5 epochs was employed to prevent overfitting, moni-
toring the validation loss during training [34]. Addition-
ally, dropout layers were incorporated into each model
to reduce the risk of overfitting by randomly setting a
fraction of input units to zero during each update [36].

3.7 Model Structures

The GRU, LSTM, and Bidirectional LSTM models were
structured to capture the temporal dependencies within
the data, leveraging their respective architectures to
process sequences. In contrast, the ConvlD model was
designed to identify local patterns in the data, applying
convolutional filters across the input sequences. This
combination of models allowed for a thorough explo-
ration of the data’s characteristics and provided insights
into the effectiveness of different architectures in this bi-
nary classification task.

3.8 Model Evaluation

Performance was evaluated using accuracy, precision,
recall, F1-score, and ROC AUC on the test set. We also
utilized confusion matrices, classification reports, ROC
curves, and precision-recall curves to assess the mod-
els’ performance comprehensively. These metrics, along
with the early stopping strategy, ensured that our mod-
els were both accurate and generalizable, minimizing
the risk of overfitting [37][38].

3.9 Results

The GRU (Gated Recurrent Unit) model demonstrated
robust performance in classifying Alzheimer’s-like pat-
terns in the sensor data. The confusion matrix showed
that the model correctly classified 3,740 instances of
class 0 and 3,288 instances of class 1, while misclassify-
ing 263 instances of class 0 and 513 instances of class 1.
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The classification report further revealed that the model
achieved a precision of 0.88 for class 0 and 0.93 for class
1, with corresponding recall values of 0.93 and 0.87. The
overall accuracy of the model was 0.90, and both the
macro and weighted averages for precision, recall, and
Fl-score were 0.90. The ROC AUC score, a measure
of the model’s discriminative ability, was 0.9809, indi-
cating a strong performance in distinguishing between
the two classes. The LSTM (Long Short-Term Memory)

Model Accuracy Model Loss
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Figure 4: GRU model Evaluation

model also performed well, with results slightly different
from the GRU model. The confusion matrix indicated
that the model correctly identified 3,501 instances of
class 0 and 3,540 instances of class 1, with 502 and 261
misclassifications, respectively. The classification report
highlighted a precision of 0.93 for class 0 and 0.88 for
class 1, with both classes achieving a recall of around
0.90. The model’s accuracy was 0.90, with macro and
weighted averages also at 0.90 for precision, recall, and
Fl-score. The ROC AUC score was 0.9801, suggest-
ing that the LSTM model was nearly as effective as the
GRU model in distinguishing between the two classes.
The Bidirectional LSTM model, which leverages infor-
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Figure 5: LSTM model Evaluation

mation from both past and future states, provided sim-
ilar results. The confusion matrix revealed that the
model correctly classified 3,646 instances of class 0 and
3,375 instances of class 1, with 357 and 426 misclassi-
fications, respectively. The classification report showed
a precision of 0.90 for both classes, with recall values of
0.91 for class 0 and 0.89 for class 1. The accuracy of the
model was 0.90, with both macro and weighted aver-
ages at 0.90 for precision, recall, and F1-score. Notably,
the Bidirectional LSTM achieved the highest ROC AUC
score of 0.9820 among the models tested, indicating su-
perior performance in capturing temporal dependencies
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and distinguishing between the classes. The 1D Con-
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Figure 6: Bidirectional LSTM model Evaluation

volutional Neural Network (Conv1D) model, which ap-
plies convolutional layers to extract features from the
sequential data, produced different results. The con-
fusion matrix showed that the model correctly classi-
fied 3,823 instances of class 0 and 2,129 instances of
class 1, but it also misclassified 180 instances of class
0 and 1,672 instances of class 1. The classification re-
port indicated a significant drop in recall for class 1,
with a value of 0.56, leading to a lower F1-score of 0.70
for this class. The model’s overall accuracy was 0.76,
with macro and weighted averages reflecting this de-
crease in performance, particularly in recall. The ROC
AUC score for the ConvlD model was 0.8884, suggest-
ing that while the model still had a reasonable abil-
ity to distinguish between the classes, it was less ef-
fective at correctly identifying Alzheimer’s-like patterns
compared to the recurrent models. Among the mod-

Model Loss

Model Accuracy

— Training Loss
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—— validation Loss

Figure 7: CNN model Evaluation

els tested, the Bidirectional LSTM achieved the high-
est ROC AUC score, suggesting superior performance
in capturing temporal dependencies and distinguishing
between normal and Alzheimer’s-like patterns. Both
the GRU and LSTM models also performed well, show-
ing balanced precision, recall, and F1-scores. However,
the ConvlD model demonstrated a significant drop in
performance, particularly in recall for class 1, making it
less reliable for this specific classification task.

4 Discussion

Results of our study indicates a great promise in detect-
ing Alzheimer-like characteristics in sensor data through
different deep learning architectures. All models were
accurate enough but among them all, recurrent models
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Figure 8: Training and Validation Metrics for Different
Models

(trained with GRU, LSTM and Bidirectional LSTM) al-
ways outshone ConvlD even on ROC analysis.
Recurrent Neural Networks (GRUs, LSTMs and BiL-
STMs): Performed exceptionally well when it comes to
building time-based relationships within sensor data due
to activity pattern shifts which are usually undetectable
meant for cognitive decline while temporally reversing
Bidirectional LSTMs had the best ROC AUC score re-
flecting their ability to utilize data held in both past
and future time intervals.

Convolutional Neural Network (ConvlD): However, de-
spite fitting localized correlations effectively Conv1D
failed to record sequential dependencies thereby produc-
ing poorer recall on class one (that is behaviors resem-
bling Alzheimer’s). This implies that understanding an
activity change series sequence is key thus making it
possible to detect cognitive decline.

The implications for Early Detection: Deep learn-
ing models for Alzheimer’s disease detection through
sensor-based data analysis are promising according to
our findings. The reasons are as follows:

Non-Invasive and Unobtrusive: A smart home with sen-
sors gives a non-invasive and unobtrusive method of
tracking personal activity patterns that reduces the re-
liance on alternative methods such as questionnaires or
clinical examinations.

Continuous Monitoring: The passive collection of data
over extended periods by these sensors allows them to
detect subtle changes in one’s activity patterns that may
go unnoticed during short-term observations.

The Early Warning System: This information can
help develop an early warning system for caregivers
and health care professionals to aid timely intervention
which could eventually slow the course of the illness pro-
gression.

5 Conclusion

This research examined how well deep learning mod-
els can recognize initial signs suggestive of Alzheimer’s
disorder based on sensor signals acquired inside a house-
hold fitted with intelligent technologies. The outcomes
reveal that GRU, LSTM, and Bidirectional LSTM are
suitable choices for this assignment, particularly as far
as capturing temporality is concerned; hence its best
attributes. On the other hand, the convolutional model
(ConvlD) had an average performance but exhibited
less sensitivity to Alzheimer-like behavior, which im-
plies that there is still room for improving those models
used on sequential actions.

This study is significant because it advances non-
invasive, unobtrusive, and possibly more sensitive meth-
ods for detecting early Alzheimer’s disease using deep
learning and smart home technology. A system to con-
tinuously monitor activities could result in an earlier di-
agnosis of Alzheimer’s disease as well as better care and
perhaps even improved management of the illness. Our
findings open the door to further investigation regarding
this field, such as new sensor technologies, more com-
plex data simulation techniques, and the enhancement
of deep learning models to improve Alzheimer diagnosis.
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