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Abstract

Regression problems have been extensively studied and
addressed using a variety of algorithms and models, in-
cluding both statistical and machine learning-based ap-
proaches. One notable application of regression tasks
is in predicting weather conditions, which has signifi-
cant, implications for various sectors. To enhance the
accuracy of real-valued predictions in time series or se-
quential data, memory-based models are particularly
effective. Among these, Bidirectional Recurrent Neu-
ral Networks stand out because they learn from both
past and future data points. Bidirectional learning ap-
proach allows for more precise parameter tuning and
improved predictive performance. This study focuses
on three specific types of Bidirectional Recurrent Neu-
ral Networks: Bidirectional Recurrent Neural Network,
Bidirectional Long Short-Term Memory, and Bidirec-
tional Gated Recurrent Unit. The primary objective
is to investigate and compare their performance in re-
gression tasks. Through a comprehensive analysis, the
models are trained on a relevant dataset and evaluated
based on their ability to adapt and fit the data and
predict unseen values. The findings of this study pro-
vide worthwhile intelligence into the efficiency of each
model, regarding the advancement of memory-based ap-
proaches in regression tasks. The Bidirectional Gated
Recurrent Unit model has demonstrated desirable per-
formance, achieving a high R? score of 0.93233. This in-
dicates a highly acceptable level of modeling accuracy.

Keywords: Bidirectional RNN, Climate Forecast, and
Regression

1 Introduction

Have you ever planned a camping trip only to be dis-
appointed by unsuitable weather conditions? This is
one of the many reasons why regression analysis is so
valuable. Climate forecasting has a rich history, dating
back to ancient times when people used wind patterns
and clocks to predict weather. The first known instance
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of this was at "The Tower of the Winds”, a historical
landmark in Athens, Greece. Today, meteorologists use
time series data to make predictions. But what if a sys-
tem could make these predictions autonomously, just
like a human? Such a system would need to learn from
past events and identify influential features, much like
humans do.

Climate forecasting lacks precise mathematical for-
mulas, but it involves patterns that can be analyzed
using Machine Learning (ML). With sufficient training
data, deep learning techniques excel at making predic-
tions by understanding complex nonlinear relationships
between input attributes and their corresponding out-
puts. Due to their impressive predictive accuracy and
versatility, ML techniques are increasingly used for cli-
mate forecasting and other time series tasks. Numerous
studies have evaluated the efficiency of different mod-
els in forecasting climate and predicting related dataset
features.

The goal of this study is to comprehensively evalu-
ate and compare three Bidirectional Recurrent Neural
Networks (BiRNNs): Bidirectional Recurrent Neural
Network (BiRNN) [1], Bidirectional Long Short-Term
Memory (BiLSTM) [2], and Bidirectional Gated Re-
current Unit (BiGRU) [3]. This comparative analysis
involves training and evaluating these models to deter-
mine their effectiveness in fitting data and predicting
unseen values. By critically assessing each BiRNN;, this
research aims to identify the most robust and reliable
model for climate forecasting, contributing to the ongo-
ing discourse on machine learning applications in this
field.

In this study, we delve into the intricacies of each
model, examining their architectures, training pro-
cesses, and performance metrics. We also explore the
theoretical underpinnings of BIRNNs and their advan-
tages over traditional unidirectional models. By lever-
aging bidirectional learning, these models can capture
dependencies in both forward and backward directions
to conclude more insightful predictions. Furthermore,
we discuss the practical implications of our findings,
highlighting how these models can be applied to real-
world climate forecasting scenarios and other time series
prediction tasks.

Ultimately, this research aims to advance the under-
standing of BIRNNs and their potential to revolutionize
climate forecasting. By providing a thorough compar-
ative analysis, we hope to offer valuable insights that



can guide future research and development in this area,
detecting ways for more accurate predictive models.

2 Related work

Climate forecasting can be viewed as both sequence
regression and sequence classification problem. Out-
comes in study [4] concluded that ML models could
have an encouraging future in arithmetic weather fore-
casting. Good result from Random Forest-based regres-
sor trained on ERA5 Monthly Aggregates was achieved
in study [5]. Study [6] suggests a big view into the
changing role of ML in climatological prediction. It ex-
clusively merges short-run weather prediction with mid-
dling and long-run climate forecastings, covering twenty
models and producing a preface of eight select mod-
els that abide in the vanguard of the production. In
study [7], the mean temperature was predicted using
the Prophet model, which yielded sufficiently accurate
results. Another study in [8] examined the performance
of a applied model named Wavelet Decomposition-
Seasonal Auto-Regressive Integrated Moving Average
with Exogenous Variables (WD-SARIMAX) and sev-
eral ML regression models. The tentative outcomes
concluded that the WD-SARIMAX provided the best
results, while the DR model yielded the worst perfor-
mance.

As this study aims to utilize recurrent neural net-
works, it is essential to consider previous research com-
paring these models. One article concluded that the
BiLSTM model outperformed traditional LSTM and
GRU models in predicting cryptocurrency prices. The
study highlighted that BiLSTM’s ability to catch long-
term relations and bidirectional context contributed to
its superior performance [9]. Additionally, a study
on traffic stream prediction reported that the BiGRU
model showed finer prediction outcomes during peak
times compared to low apex times. The study also noted
that the suggested model had a definite lag, and rec-
ommended using the GRU model for predicting traffic
stream in big route lattice outlines, balancing computa-
tional proficiency and prediction reliability [10].

Recurrent neural networks are utilized for other time
series tasks. One is to do predictions on Satellite Image
Time Series (SITS) which is a series of satellite images
that write down a given zone at a few successive times.
In study [11], SITS has been modeled by numerous Deep
Learning (DL) methods, with 1D Convolutional Neu-
ral Networks (1D-CNNs) and RNNs wielded to model
time-related data, and more complicated methods such
as RNNs, hybrid CNN and 3D-CNNs wielded for spatial
temporal modelling. Additionally, DL, methods utilized
for SITS forecasting are put into three principal batches,
namely feed-forward-based models, hybrid models and
RNN-based models in study [12]. Study [13] offered

a novel BIGRU named KT-Bi-GRU student efficiency
forecasting task. This model presents a adjusted con-
struction with two subnetwork parts. The first subnet-
work is for approximating the student lore state based
on her/his link history utilizing a RNN and the sec-
ond forecasts the student efficiency utilizing Multi-Layer
Perceptron (MLP).

Study [14] states that time series predictions can also
be done by Genetic Algorithm (GA), Support Vector
Machine (SVM) as a ML method. SVM is also ap-
plied in monetary time series prediction. According to
study [15], SVM provided a more reliable and more ef-
fectual prediction method for such economic data than
the Box and Jenkins’ Autoregressive Integrated Moving
Averages (ARIMA) [16] and Artificial Neural Network
(ANN) models did. Additionally, study [17] concluded
that SVM has smaller number of free parameters, does
prediction better in quality and has faster training pro-
cess in comparison with a MLP trained by the Back-
Propagation (BP) algorithm. Cuffless blood pressure
estimation, a physiological time series, has been mod-
eled using Physics-Informed Neural Network (PINN)
[18] in study [19].

This study aims to contribute to the ongoing advance-
ments in ML and its applications in climate forecast-
ing as a time series prediction tasks by leveraging the
strengths of BIRNN models.

3 Dataset

The intended dataset spans from January 1, 2013, to
April 24, 2017, and pertains to the city of Delhi, India.
It comprises 1,463 training samples and 115 test sam-
ples. Each record includes five features: date, mean
temperature, humidity, wind speed, and mean pres-
sure [20]. The ’date’ feature is excluded from the dataset
as it serves as a unique primary key for each record and
is not useful for modeling purposes.

A correlation analysis of the data (illustrated in Fig-
ure 1) reveals that the 'mean pressure’ feature has the
least correlation with the target variable, 'mean temper-
ature,” indicating its minimal impact on the modeling
process. Additionally, the 'wind speed’ feature contains

Correlation Matrix

Figure 1: Feature Correlation Matrix
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some outliers (illustrated in Figure 2), which are ad-
dressed using the Z-Score method. This method helps
in identifying and mitigating the influence of extreme
values (illustrated in Figure 3), ensuring that the data
is more representative of typical conditions.

Following the preprocessing phase, the data is nor-
malized to ensure consistency and improve model per-
formance. Normalization scales the features to a stan-
dard range, typically between 0 and 1, which helps in ac-
celerating the convergence of gradient-based learning al-
gorithms and enhances the overall stability of the model
training process. The dataset provides a comprehensive
overview of the climatic conditions in Delhi over the
specified period, capturing variations in temperature,
humidity, wind speed, and pressure. This rich dataset
serves as a robust foundation for training and evaluat-
ing the BiRNNs explored in this study. By leveraging
this data, the study aims to develop accurate and reli-
able models for climate forecasting, contributing to the
broader field of ML applications in meteorology.

4 Methods and Models

A BiRNN has of two easily distinguishable recurrent
hidden layers. Omne layer processes the sequence-type
input in the forward side, while the other processes the
input in the backward side.

Figure 2: ’wind speed’ in Delhi over the years including
outliers

Wind Speed in Delhi Over the Years

Figure 3: 'wind speed’ in Delhi over the years (outliers
are dealt with)
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The results from the processes are then combined and
fed into a layer for final forecasting. In the forward side,
the BiRNN functions similarly to conventional recurrent
neural networks, modernizing the hidden state based on
the present input and the previous hidden state step by
step. Conversely, the backward hidden layer processes
the input in reverse, modernizing the hidden state based
on the present input and the hidden state of the next
step. This bidirectional processing improves the reli-
ability of the BIRNN by considering both directions.
The two hidden layers complement each other, provid-
ing the final forecasting layer with more comprehensive
data, which also serves as a form of model regulariza-
tion. During training, gradients are calculated for for-
ward and backward passes using the BackPropagation
Through Time (BPTT) technique. The BiRNN archi-
tecture is depicted in Figure 4.

BiLSTM is a recurrent neural network which is
applied in Natural Langauge Processing (NLP). Like
BiRNN, it processes input in both directions, utiliz-
ing information from both sides. BiLSTM has an ex-
tra LSTM layer that drives backward the direction of
knowledge stream, meaning the sequence-type input
passes backward in this layer. The outputs from both
LSTM layers are then combined using methods such
as averaging, summation, multiplication, or concatena-
tion. This architecture has significant advantages in ad-
dressing real-world problems, as each part of an input
contains knowledge from the past and current. Conse-
quently, BiLSTM provide more significant outputs by
merging LSTM layers from both sides. It is worth not-
ing that BiLSTM requires more time for training and
hence it’s a slower model. The BiLSTM architecture is
depicted in Figure 5.

BiGRU is a bidirectional recurrent neural network

that has just forget and input gates. It also has two
GRUs: one processing the input in a forward side (orig-
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Figure 4: An overview of BIRNN architecture [21]
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Figure 5: An overview of BiLSTM architecture [22]

inal order) and the other in a backward side (the reverse
order). This bidirectional approach allows BiGRU to
efficiently catch underlying knowledge from both fore-
going and succeeding inputs. The BiGRU architecture
is depicted in Figure 6.

In summary, bidirectional recurrent neural networks
are exceedingly effectual for time series and sequential
data because they can catch serial correlations through
memory mechanisms.

5 Results

To evaluate the effectiveness and accuracy of the com-
putations described in this work, various performance
indicators are utilized. We begin by explaining and
elaborating on these assessment criteria to provide a
comprehensive overview.

1. MAE (Mean Absolute Error): MAE estimates the
mean enormity of errors in a set of forecastings, without
pondering their side. It is computed as the mean of the
absolute disparities between real and estimated values:

1 o X
MAE =~ 7|2k — 4| (1)
k=1

while n is the number of observations, Z is the esti-
mated value and zj is the real value. It supplies a
straightforward explanation of the mean error enormity,
making it a helpful metric for realizing the all-embracing
reliability of the model’s predictions.

2. MSE (Mean Squared Error): MSE estimates the
mean of the squares of the errors. It gives more atten-
tion to bigger errors, making it practical for recognizing
important errors in predictions. The formula is:

n

MSE — % 3 (i - 2 )

k=1

while n is the number of observations, Zj is the esti-
mated value and zj is the real value. It is especially
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Figure 6: An overview of BiGRU architecture [23]

sensitive to outliers, as larger errors are squared, thus
having a greater impact on the overall error metric. This
makes MSE a valuable tool for detecting and addressing
significant deviations in the model’s predictions.

3. R2 Score (R-squared Score): R? which is acknowl-
edged as the coefficient of determination, implies the
part of the variance in the dependent variable that is
foreseeable from the self-reliant variables. It ranges from
0 to 1, where 0 concludes the model interprets none of
the variability and 1 concludes it interprets all the vari-
ability. A negative value indicates that using the aver-
age of the data would be more reasonable than modeling
for prediction. The formula is:

_ D (20 — 21)?

ZZ=1(21€ - z)?

while n is the number of observations, Z; is the esti-
mated value, z; is the real value and Z is the mean of
the real values. It supplies an estimation of how good
the model’s predictions match with the actual data, giv-
ing perspicacities into the model’s explanatory power or
overall performance.

To predict mean temperature values, we conducted a
comparative analysis. The output layer was configured
with a single node utilizing a linear activation function,
appropriate for regression tasks. The study utilized key
hyperparameters, including Number of Hidden Nodes
(HN), Number of Hidden Layers (HL), Activation Func-
tion for Hidden Layer (AF), Loss Function (LF), Opti-
mization Algorithm (OA), Batch Size (BS), Number of
Epochs (NE) and Validation Split (VS) which is a per-
centage of training set and none of the study models
requires particular hyperparameter. Each hyperparam-
eter was assigned a specific value for all modelings, as
detailed in Table 1.

An additional evaluation was performed using the
same hyperparameters but with 150 training epochs in-
stead of 75. This led to overfitting across all models.
Consequently, we decided to proceed with 75 training
epochs as a more effective strategy. We also exam-
ined the performance of unidirectional recurrent neu-

R?=1 (3)
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ral networks, which process sequential data in one di-
rection, capturing dependencies based on past context,
while bidirectional recurrent neural networks process
the data in both directions, capturing dependencies
from both past and future context and pull in future
data to enhance the reliability of forecasting-in other
words, bidirectional recurrent neural networks have out-
performed their unidirectional counterparts, as mathe-
matically demonstrated in [24]. The performance re-
sults of each model are presented in Table 2, offering a
detailed comparison of metrics such as MAE, MSE and
R? scores across training epochs. By probing the out-
comes, we can recognize the frailties and powers of each
model and their suitability for the regression task.

biRNN-based Regressor

Figure 7: BiRNN-based regressor.

biLSTM-based Regressor

Figure 8: BiLSTM-based regressor.

biGRU-based Regressor

Figure 9: BiGRU-based regressor.

Table 2: Model performances after learning in 75

Epochs.
Metric 5
Model MAE MSE R?2 Score
GRU 0.17311 0.05035 0.93223
LSTM 0.17899 0.05209 0.92988
RNN 0.19497 0.06550 0.91185
BiRNN 0.20987 0.07334 0.90129
BIiLSTM 0.17867 0.05180 0.93028
BiGRU 0.17429 | 0.05028 | 0.93233

6 Comparison

This paper seeks to identify and discuss some attributes
of the models. Let’s first examine their generalization
capabilities.

RNN and BiRNN became overfitted and failed to gen-
eralize effectively, as evidenced by higher error values
and lower R?2 score. In contrast, LSTM, GRU, BiLSTM
and BiGRU maintained nearly the same performance
quality, with acceptable high R? scores (greater than
0.92) and low error values for MAE and MSE (less than
0.18 and 0.06, respectively). RNN and BiRNN’s ten-
dency to overfit highlights the need for careful regular-
ization and early stopping techniques to prevent perfor-
mance degradation. On the other hand, other studied
models’ ability to catch long-term dependencies makes
them particularly effective for tasks involving complex
sequential data. By the way, study [8] reported that the
WD-SARIMAX model gave the best outcomes in this
Delhi climate temperature forecasting with R?, MAE,
and MSE are 0.91, 1.13, and 2.8, respectively, which
is definitely worst in comparison with the performance
results reported here.

According to the outcomes, bidirectional recurrent
neural network did better performance in comparison
with the correspondent unidirectional recurrent neu-
ral network, except that RNN did better than BiRNN
probably because it has more complex architecture and
becomes overfitted sooner than RNN did in the 75
epochs, or due to applying shuffling the training dataset
for making batches in training phase. Nevertheless,
the outcomes state that bidirectional recurrent neural
networks does not enhance reliability and accuracy so
much, probably because the number of train samples
wasn’t great enough to demonstrate the superiority of
them as well.

Table 1: Hyperparameters Initialization

Hyperparameter || HL | HN AF

LF OA | BS|NE | VS

Assigned Value 1 50

ReLU

MSE | Adam | 5 75 | 20%
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7 Conclusion

In this comparative examination on bidirectional recur-
rent neural networks’ performances, none of the stud-
ied models failed to model the data effectively, except
for BiIRNN, which experienced overfitting. However, in-
creasing the number of training epochs can lead to more
accurate models. Both BiLSTM and BiGRU achieved
good results, with performance metrics that were nearly
identical. According to Occam’s razor, which favors
simpler models when performance is comparable, we can
conclude that the BIGRU model is the best choice due to
its simpler architecture and efficient performance. The
results underline the significance of working with the
appropriate model and training duration to achieve op-
timal results. While BiRNN showed a tendency to over-
fit, BILSTM and BiGRU demonstrated strong general-
ization capabilities. BiGRU’s resilience to overfitting
and its ability to maintain high performance with fewer
parameters make it a particularly attractive option for
practical applications.

The study doesn’t underscore on hyperparameter
tuning which might affect the results and conclusion
of this study and change them. By leveraging the
strengths of each model, researchers can seek more re-
liable predictive approaches, contributing to advance-
ments in machine learning and its applications.

In summary, the BiGRU model stands out as the
most effective and efficient choice for predicting mean
temperature, offering a balance between simplicity and
performance. These findings contribute to the broader
understanding of bidirectional recurrent neural net-
works and their applications.
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