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Abstract

This paper presents a comparative analysis of different
approaches for classifying malaria-infected cells, includ-
ing pre-trained models, mutual information techniques,
and a custom-designed Convolutional Neural Network
(CNN). Malaria, a life-threatening disease, necessitates
precise and swift diagnosis. The study uses a pub-
licly available dataset of malaria cell images, apply-
ing preprocessing and data augmentation to enhance
the models’ performance. The proposed CNN archi-
tecture was evaluated using 5-fold cross-validation and
compared against DenseNet121 and mutual information
techniques. The proposed model achieved the highest
accuracy of 96.15% on the test dataset, outperforming
the others. This work demonstrates that the custom
CNN model provides a superior solution for automated
malaria detection, especially in low-resource environ-
ments.

Keywords: 5fold cross-validation, Mutual informa-
tion, and Pretrained models

1 Introduction

With over 400,000 deaths annually due to malaria, the
need for scalable, accurate, and cost-effective diagnostic
tools is more critical than ever. Recent advancements in
AT offer transformative potential, yet their application
in low-resource settings remains underexplored.
Accurate and rapid disease diagnosis is a corner-
stone of effective medical management and treatment.
Malaria, as a life-threatening disease, remains a signifi-
cant challenge in many tropical and subtropical regions.
Despite notable advancements in laboratory diagnos-
tics, conventional methods such as microscopy often face
limitations in resource-constrained environments due to
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the need for specialized equipment and trained person-
nel.

The emergence of artificial intelligence and deep
learning has opened new horizons for automating di-
agnostic processes and reducing reliance on traditional
techniques. Convolutional Neural Networks (CNNs),
with their exceptional ability to analyze complex visual
data, have become highly effective tools for identifying
patterns and anomalies in medical imaging. These ap-
proaches have the potential to enhance diagnostic accu-
racy and speed, offering novel opportunities for improv-
ing efficiency in resource-limited settings.

This study focuses on designing and evaluating a deep
learning-based model for the detection of malaria from
medical images. Leveraging the hierarchical learning
capabilities of CNNs, we aim to streamline the diagnos-
tic process and reduce dependence on manual expertise.
The primary goal of this research is to provide a practi-
cal and accurate solution for automated diagnostic sys-
tems that can be implemented effectively in real-world,
resource-constrained environments.

While traditional methods and pre-trained models
like DenseNet have achieved significant results in medi-
cal image classification, our study proposes a novel CNN
architecture specifically optimized for malaria detec-
tion in resource-constrained environments. This archi-
tecture incorporates advanced feature extraction tech-
niques and tailored preprocessing methods to address
challenges like low image resolution and data imbalance,
setting it apart from existing approaches.

2 Literature Review

Malaria is a life-threatening disease transmitted by fe-
male Anopheles mosquitoes. Symptoms include fever,
vomiting, headaches, and fatigue, with severe cases lead-
ing to coma or death [? ]. The disease is caused by pro-
tozoa from the genus Plasmodium, with P. falciparum
being the most lethal [8]. Malaria is widespread in
tropical and subtropical regions, particularly in Sub-
Saharan Africa, Asia, and Latin America. Globally,
malaria caused around 731,000 deaths in 2016, with 90%
occurring in Africa.

Microscopy remains the gold standard for malaria di-
agnosis, involving the placement of a blood drop on a
glass slide, followed by staining and examination for par-



asites [31]. This method, however, poses challenges,
especially in resource-limited African countries where
there is a scarcity of equipment, materials, and skilled
personnel necessary for accurate diagnoses [? |. The
overlap of malaria symptoms with other diseases can
complicate treatment, potentially increasing the risk
of antibiotic and drug resistance when treatments are
based solely on symptoms [5? ]. Leaving malaria un-
treated is critically dangerous and can be fatal.

Malaria diagnosis is often initiated based on clinical
symptoms; however, the Centers for Disease Control
and Prevention (CDC) underscores the necessity of lab-
oratory confirmation [9]. Various laboratory techniques
are utilized to confirm malaria infection, including poly-
merase chain reaction (PCR), which is pivotal for iden-
tifying the specific Plasmodium species responsible for
malaria in confirmed cases [14]. Antigen detection as-
says serve as rapid diagnostic tests that detect Plas-
modium-derived antigens, facilitating timely diagnosis
[17, 28]. Serological testing, such as enzyme-linked im-
munosorbent assays (ELISA), is employed to identify
antibodies against malaria parasites, offering another
layer of confirmation [24].

Despite their effectiveness, these laboratory methods
are often impractical in low-resource settings due to
their high costs, the need for specialized equipment, and
the requirement for trained personnel [9]. As a result,
light microscopy of thin or thick blood smears stained
with Giemsa is the predominant method for diagnos-
ing malaria in these contexts, providing confirmation of
Plasmodium presence [7].

The severity of malaria infection is frequently assessed
by calculating the percentage of red blood cells infected
with malaria parasites, commonly referred to as percent
parasitemia or parasitemia burden. However, the diag-
nostic accuracy of Giemsa-stained blood smears is heav-
ily reliant on the technician’s skill, as manual classifica-
tion and enumeration of infected cells are required. This
dependence on manual processes can lead to substantial
inter-observer variability, particularly in low-resource
environments where technicians may face multiple re-
sponsibilities and receive insufficient training specific to
malaria diagnostics [4, 6]. For instance, a study in Nige-
ria revealed significant concerns regarding the reliabil-
ity of malaria test results, attributing discrepancies to
technician incompetence [13]. Moreover, research con-
ducted in primary health care facilities in Tanzania re-
ported a sensitivity of 74.5% and specificity of 59.0% for
microscopy-based malaria diagnoses, highlighting defi-
ciencies in technician training [27]. Similar findings were
reported in Angola, where inadequate training for tech-
nicians engaged in microscopy-based malaria diagnos-
tics was identified as a critical issue [25].

To address these challenges, automated algorithms
leveraging image processing, computer vision, and ar-

tificial intelligence are continuously evolving . These
technologies can enhance diagnostic reliability and stan-
dardization, particularly in low-resource settings, and
enable researchers to conduct evaluations swiftly with-
out the need for costly laboratory equipment. The adop-
tion of machine learning techniques, especially neural
networks, is expanding rapidly across various clinical
domains. Primarily, these methods find applications
in segmentation and classification tasks involving clin-
ical images [2, 22, 32] as well as histological specimens
[16, 35]. Among these applications, the deployment
of machine learning for malaria diagnosis has gained
particular attention, leading to the development of nu-
merous classification models aimed at distinguishing be-
tween infected and uninfected red blood cells.

In situations where these red blood cell images lack
sufficient resolution, the Fast Super-Resolution CNN
(FSRCNN) model has been applied to upscale low-
resolution images from 32x32 pixels to 128x128 pixels
[12]. This enhancement is particularly useful when low-
end cameras compromise image quality during the ac-
quisition of thin blood smear images. Subsequently, a
variant of the VGG16 CNN has been utilized to classify
each red blood cell as either infected or uninfected. This
sequential approach establishes an efficient mechanism
whereby our screening platform processes thin blood
smear images, providing healthcare practitioners with
quantifiable data on the number of infected red blood
cells and the associated parasitemia burden within a
sample.

This study focuses on the design and development of a
deep learning model tailored for the detection of malaria
in medical images. We utilize Convolutional Neural
Networks (CNNs), which have shown exceptional per-
formance in image classification tasks across various do-
mains. The inherent capability of CNNs to automati-
cally learn hierarchical features renders them particu-
larly effective for analyzing complex visual data, mak-
ing them well-suited for identifying patterns and anoma-
lies in medical imaging. Our selection of CNNs stems
from their robustness in processing high-dimensional
data and their proficiency in learning from extensive
datasets—qualities that are vital given the variability
inherent in medical images. By training our model on
a diverse dataset comprising both malaria-infected and
non-infected samples, we aim to develop a system that
not only improves diagnostic accuracy but also stream-
lines the detection workflow.

Malaria detection from medical images presents chal-
lenges due to the complexity of the disease and reliance
on manual methods. Malaria, caused by Plasmodium
parasites, remains a major global health issue. Accu-
rate and rapid diagnosis is critical for effective disease
management, but traditional methods, like manually ex-
amining blood smears, are time-consuming and prone to
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error.

Overcoming the challenges of manual malaria de-
tection requires more efficient, automated solutions.
Deep learning techniques, especially Convolutional Neu-
ral Networks (CNNs) [19], have shown promising re-
sults in detecting malaria from medical images. These
models can reduce diagnostic errors and accelerate the
process, though challenges remain in improving accu-
racy and adapting to diverse imaging conditions. This
section of the literature review addresses research con-
ducted on the identification and classification of malaria
parasites using image processing techniques and deep
learning methods.

We structured our paper as follows: Section 1 intro-
duces the problem of malaria detection from medical
images and provides a literature review on existing algo-
rithms utilizing Convolutional Neural Networks (CNNs)
for image classification. Section 2 describes the archi-
tecture of our proposed CNN model and outlines the
training methodology, including data preprocessing and
augmentation techniques. Section 3 presents the perfor-
mance evaluation of our model, comparing it to tradi-
tional diagnostic methods, and discusses the quantita-
tive results achieved in distinguishing between malaria-
positive and malaria-negative cases. Finally, Section
4 concludes the paper by highlighting the implications
of our findings and suggesting directions for future re-
search in malaria detection.

2.1 Detection of Malarial Parasites in Blood using
Image Processing

Malaria, caused by the Plasmodium parasite, is a highly
infectious disease and a significant global health con-
cern. Traditional microscopy, the "gold standard” for
detection, is often inconsistent and time-consuming. To
enhance detection, a system was developed using im-
age processing techniques for rapid and reliable iden-
tification of malaria through stained thin blood smear
images. This model analyzes datasets of both infected
and healthy erythrocytes, extracting features to deter-
mine if a sample is infected [26, 34].

2.2 Malaria Cell Image Classification Using Deep
Learning

Timely detection of malaria is crucial for effective
patient treatment and preventing its spread through
mosquitoes. Researchers advocate for treating malaria
as a medical emergency and applying machine learn-
ing (ML) techniques to analyze microscopic red blood
smear images. They utilize Convolutional Neural Net-
works (CNNs), a type of deep learning (DL) model,
known for their scalability and efficiency in end-to-
end feature extraction and classification. This ap-
proach serves as a valuable diagnostic tool for auto-
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mated malaria detection. The study evaluates the per-
formance of pre-trained CNNs as feature extractors for
classifying parasitized and uninfected cells, identifying
optimal model layers for statistical validation of results,
thereby demonstrating the effectiveness of pre-trained
CNNs in feature extraction [3, 23].

3 Experimental Design and Methodology

3.1 Preparing Dataset

The NIH Malaria Dataset, available from the Lis-
ter Hill National Center for Biomedical Communica-
tions (LHNCBC) at the National Library of Medicine
(NLM), can be accessed at https://lhncbc.nlm.nih.
gov/publication/pub9932. This dataset consists of
27,588 labeled and segmented cell images, all obtained
from Giemsa-stained thin blood smear slides. It con-
tains an equal distribution of uninfected red blood cells
and Plasmodium falciparum-infected red blood cells,
sourced from 150 infected individuals and 50 uninfected
individuals.

The images in the dataset were manually annotated
by an expert slide reader from the Mahidol-Oxford
Tropical Medicine Research Unit. The dataset includes
13,779 parasitized red blood cell images and 13,779 un-
infected red blood cell images. Positive samples con-
tain Plasmodium, while negative samples do not con-
tain Plasmodium but may include other objects such
as staining artifacts or impurities. The segmented red
blood cell patches are in RGB format, with sizes rang-
ing from 110 to 150 pixels, which were later re-sampled
to a uniform size of 128 x 128 pixels. The images have
a depth of 3 channels and are stored in 32-bit floating
point precision (FP32) to meet the input requirements
of the classification algorithms used in this study. A
selection of sample images from the dataset is shown in
Figure 1.
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Figure 1: Comparison of parasitized (left) and unin-
fected (right) cell images



3.1.1 Data Preprocessing

To facilitate the training of deep learning models, a com-
prehensive series of preprocessing steps was methodi-
cally implemented for both the Infected and Unin-
fected directories. This careful and thorough prepro-
cessing of the dataset guaranteed that the images were
standardized and suitably prepared for applications in
deep learning. Such an approach improves the model’s
capacity to effectively process the data, leading to de-
pendable results in disease detection. Consequently, the
resulting algorithm will establish a solid framework for
disease identification through an extensive analysis of
both infected and healthy images. Below are the spe-
cific preprocessing steps undertaken:

First, all image names were gathered and organized
from the Infected and Uninfected folders to facilitate
efficient processing. A filter was applied to retain only
.png files, ensuring the dataset’s integrity by excluding
non-image files.

Next, light denoising was applied to the images, and
all were resized to a standardized size (defined by the
variable SIZE) to maintain uniformity, which is essential
for improving model accuracy and performance. The re-
sized images were then converted into arrays for efficient
computational processing, enabling rapid data handling
for the deep learning model. Finally, the processed im-
ages were added to the dataset, preparing it for model
training.

3.1.2 Data Splitting

The dataset was first split into two subsets: training
and test sets, with 80% of the data allocated to training
and 20% to testing. Subsequently, the training data was
further divided into 80% for training and 20% for val-
idation. This approach ensures an effective division of
data for training, validating, and testing the deep learn-
ing models, allowing for a comprehensive assessment of
their performance on unseen data.

3.1.3 Data Augmentation

In this study, data augmentation was employed to
enhance the training dataset’s diversity and im-
prove the robustness of the deep learning model.
The augmentation process was facilitated using the
ImageDataGenerator class from the TensorFlow Keras
library, which allows for real-time data transformation
during model training.
The relevant augmentation techniques are:

1. Rescale: Rescaling was applied by dividing the
pixel values of the images by 255, adjusting them
to a [0, 1] range. This normalization ensures consis-
tent input data and enhances the model’s training
efficiency.

2. Rotation: Images were randomly rotated within
a range of 20 degrees, allowing the model to learn
from different orientations of the input data.

3. Width and Height Shifts: A shift of up to 20%
of the total width and height was applied to the
images. This horizontal and vertical translation en-
ables the model to become invariant to the position
of objects within the images.

4. Shearing: A shear transformation was applied
within a range of 20%. This technique alters the
perspective of the images, helping the model gener-
alize better to variations in shape and orientation.

5. Zoom: Random zooming of up to 20% was ap-
plied to images, simulating varying distances of the
subject from the camera.

6. Horizontal Flipping: Images were randomly
flipped horizontally. This transformation is partic-
ularly useful for symmetrical objects, allowing the
model to learn features from both orientations.

7. Fill Mode: The fill mode was set to ’nearest’,
ensuring that any newly created pixel values from
the transformations are filled with the nearest pixel
value, preventing any artifacts in the augmented
images.

3.1.4 Evaluation Metrics

To comprehensively evaluate the robustness and gen-
eralization ability of the proposed CNN, 5-fold cross-
validation was employed. In this technique, the dataset
was divided into five equal folds. Each fold was used
as a validation set once, while the remaining four folds
served as the training set. This ensures that every data
point is used for both training and validation, providing
a reliable estimate of the model’s performance. Aver-
aging the performance metrics across all folds mitigates
the effects of overfitting and provides a robust evalua-
tion framework.

Predicted Class
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Positive Negative
- ; . False Negative (FN) Senativity
Positive True Positive (TP) Fias IR TP
ype rror TP
Actual Class
y False Positive (FP) Specificity
Negative - True Negative (TN) TN
Type I Error THTT)
. Negative Predictive Accuracy
Precision
p Value TP+TN
R ™ (TP +TN + FP + FN)
(TP + FP) S
(TN + FN)

Figure 2: Performance measurement [33].
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The evaluation metrics used to assess the model’s
performance include accuracy, precision, recall, and F1-
score 2.

Here, the terms are defined as follows:

e True Negative (TN): These are cases where the
model correctly predicts the negative class. In
other words, the instances where the actual class
is negative, and the model predicted it as negative.

e True Positive (TP): These are cases where the
model correctly predicts the positive class. It refers
to instances where the actual class is positive, and
the model correctly predicted it as positive.

e False Negative (FN): These occur when the model
predicts a negative outcome when it should have
predicted a positive one. In other words, the in-
stances where the actual class is positive, but the
model predicted it as negative.

e False Positive (FP): These occur when the model
predicts a positive outcome when it should have
predicted a negative one. It refers to instances
where the actual class is negative, but the model
incorrectly predicted it as positive.

In our experimental framework, accuracy was desig-
nated as the primary metric for optimization, while the
other metrics were used to validate the model’s balanced
performance across different evaluation criteria.

3.2 Methods
3.2.1 Mutual Information

Mutual information, when applied in neural networks,
helps us understand how much useful information is
passed from the input to the network’s layers and, ulti-
mately, to the output. It measures the connection be-
tween the input features (like image pixels) and what
the network is learning. By focusing on the most im-
portant features, mutual information helps the network
become more efficient, making better decisions with less
noise or irrelevant data. This method ensures the net-
work is learning from the most meaningful parts of the
data, leading to improved accuracy in tasks like image
classification.

3.2.2 Pretrained Models

Pretrained models are neural networks that have been
previously trained on large datasets and can be fine-
tuned for new tasks. By leveraging their learned fea-
tures, these models allow for faster training and im-
proved performance, especially when labeled data is
limited. In this paper, we used DenseNet model.
DenseNet’s architecture allows efficient feature propa-
gation by connecting each layer to every other layer,
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ensuring strong gradient flow during training. Its abil-
ity to capture intricate patterns in the data made it a
suitable choice for our classification task, providing a
solid baseline for comparison with our custom network.

3.2.3 Grad-CAM Visualization

To enhance the interpretability of the proposed model,
Grad-CAM was employed to visualize the regions of the
input images that contribute the most to the network’s
predictions. Heatmaps were generated using the final
convolutional layer, as it encodes high-level task-specific
features. Grad-CAM was applied to test samples to
assess the generalizability and decision-making process
of the model.

3.3 Proposed Architecture

The proposed CNN starts with convolutional layers us-
ing kernel sizes optimized based on dataset characteris-
tics. Batch normalization and dropout layers were care-
fully tuned to prevent overfitting, while the Adam op-
timizer was selected due to its adaptive learning rate
capabilities, which ensure stability across variable data
distributions.

Convolutional Neural Networks (CNNs) are a spe-
cialized class of feedforward neural networks that have
proven highly effective in extracting features from data
through convolutional operations. Unlike traditional
feature extraction methods, which often rely on man-
ual engineering [1, 10, 20], CNNs autonomously learn
hierarchical features directly from the input data. The
architecture of CNNs is inspired by the mechanisms of
human visual perception, where artificial neurons sim-
ulate biological ones, convolutional kernels act as re-
ceptors detecting specific patterns, and activation func-
tions resemble the selective transmission of signals that
exceed a defined threshold [18]. In addition, loss func-
tions and optimizers are carefully designed to guide the
network towards achieving task-specific learning objec-
tives.

CNNs offer distinct advantages over traditional artifi-
cial neural networks. One of the key benefits is the use of
local connections, where each neuron is connected only
to a small subset of neurons in the previous layer, reduc-
ing the number of parameters and accelerating model
convergence [20]. Furthermore, weight sharing allows
multiple connections to share the same weights, sim-
plifying the network structure and minimizing the risk
of overfitting [15]. Dimensionality reduction through
down-sampling, achieved by pooling layers, not only re-
duces computational complexity but also helps retain
critical features while discarding irrelevant information
[10]. These advantages contribute to CNNs’ high effi-
ciency in processing complex data, especially in tasks
such as medical image analysis.



These capabilities make CNNs particularly suited for
processing complex visual data, an essential require-
ment for recognizing patterns and detecting abnormal-
ities in malaria-related medical images. Through the
use of CNNs, researchers have made significant strides
in automating the detection and classification of medical
anomalies, demonstrating their transformative potential
in healthcare applications [19, 29].

The proposed model is a custom Convolutional Neu-
ral Network (CNN) designed to classify malaria cell im-
ages with high accuracy. The architecture of the net-
work is carefully crafted to extract relevant features
while ensuring robustness and efficiency during train-
ing.

The network begins with an initial series of convolu-
tional layers, each employing 32 filters of size 3x3, fol-
lowed by ReLU activation functions to introduce non-
linearity. These layers are responsible for capturing low-
level features such as edges and textures from the in-
put images. The convolutional outputs are then passed
through a MaxPooling layer with a pool size of 2x2,
which reduces the spatial dimensions of the feature
maps, preserving only the most salient information.

To enhance training stability and speed up conver-
gence, batch normalization is applied after the convo-
lutional layers. This technique normalizes the activa-
tions of each layer, helping maintain an optimal distri-
bution of values throughout the network. Additionally,
dropout is incorporated into the architecture to mitigate
the risk of overfitting, randomly setting a portion of the
inputs to zero during training and forcing the model to
generalize better.

As the network progresses, more convolutional layers
with 64 and 128 filters are introduced to capture increas-
ingly complex and abstract features. These deeper lay-
ers are also followed by MaxPooling operations, which
further reduce the spatial dimensions of the data while
retaining essential features.

After the convolutional and pooling layers, the net-
work flattens the output feature maps into a one-
dimensional vector, which is then passed through a fully
connected layer. This layer, consisting of 256 neurons,
learns to combine the extracted features into higher-
level representations that are essential for classification.

Finally, the output layer consists of a single neuron
with a sigmoid activation function, which is appropri-
ate for the binary classification task of distinguishing
between malaria-infected and non-infected cells.

The model is trained using the Adam optimizer, with
a learning rate of 0.001, and the categorical cross-
entropy loss function, which is well-suited for binary
classification tasks. During training, the model demon-
strates robust performance, achieving high classification
accuracy and outperforming several baseline models.

This custom CNN architecture was evaluated on a

Figure 3: Proposed Architecture: Yellow - Convolu-
tional, Red - Maxpooling,Blue - Batch Normalization,
Green - Dropout, Purple - Dense, and last Layer - Clas-
sification.

comprehensive dataset containing both malaria-infected
and non-infected samples, demonstrating its efficacy in
classifying medical images. The network’s design, focus-
ing on efficient feature extraction, regularization, and
deep learning techniques, positions it as an effective so-
lution for automated malaria detection.

See Figure 3 for a visual representation of the pro-
posed network architecture.

3.4 Experimental Setup

The computational setup comprised a robust infrastruc-
ture featuring 32 GB of RAM, an NVIDIA RTX 3060 6
GB graphics card, and a high-performance Intel Core
i7 processor. The foundation of our methodology is
built upon the utilization of Convolutional Neural Net-
works (CNNs), which are well-known for their superior
performance in image classification tasks across various
domains.

4 Results

we conducted a comparative analysis using four distinct
methods: 5-fold cross-validation, DenseNet121, mutual
information, and the proposed custom architecture.

The comparative analysis shows that the proposed
model outperformed the other approaches in terms of
accuracy and efficiency, making it the most suitable so-
lution for the malaria cell classification task.

The proposed model achieved a Mean Fl-score of
0.97+0.01 at a 95% confidence interval, indicating that
the model’s performance is highly stable and consistent
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across different folds of the dataset.

The narrow confidence interval (£ 0.01) of the Mean
Fl-score further suggests that the performance of the
proposed model is stable across different splits of the
dataset. This demonstrates the model’s robustness and
reliability for malaria cell classification tasks.

Furthermore, to statistically validate the superiority
of the proposed model compared to DenseNet121, a t-
test was performed. The p-value obtained (p = 0.00047)
demonstrates that the difference in Fl-scores between
the proposed model and DenseNetl121 is statistically
significant (p < 0.05). This result confirms that the
observed performance improvement is unlikely to have
occurred by chance, reinforcing the robustness and reli-
ability of the proposed approach for malaria cell classi-
fication.

The p-value (p = 0.00047) indicates that there is less
than a 0.05% probability that the observed performance
improvement occurred due to chance, reinforcing the
statistical reliability of the proposed model.

In the classification report for our results, the pro-
posed model achieved high precision and recall scores
for both classes, leading to a strong F1-score. This indi-
cates that the model not only predicts malaria-infected
cells accurately but also detects most true positives,
with a minimal false positive and false negative rate.
These results further confirm that our proposed archi-
tecture is effective for this classification task, outper-
forming other models used in the study.

Additionally, to further evaluate the model’s perfor-
mance on the test dataset, a confusion matrix was gen-
erated. The confusion matrix provides a detailed break-
down of true positives, true negatives, false positives,
and false negatives for both classes (Parasitized and
Uninfected). This visualization offers deeper insight
into the strengths and weaknesses of the proposed ar-
chitecture in terms of classification accuracy. Figure 5
presents the confusion matrix, illustrating the model’s
robust performance with minimal misclassifications.

The Grad-CAM visualizations demonstrate how the
proposed model focuses on specific regions of the in-
put image to make predictions. Figure 6 illustrates an
example of Grad-CAM applied to a test sample, show-
ing the original input image, the generated heatmap
highlighting regions of activation, and the overlay of the
heatmap on the input image for better interpretability,
respectively. These visualizations validate the proposed
model’s ability to focus on relevant areas, confirming
the effectiveness of the proposed architecture.

Compared to DenseNetl21, our proposed model
achieved a statistically significant improvement (p j
0.001) in Fl-score, demonstrating its ability to gen-
eralize effectively on imbalanced datasets. Further-
more, the confusion matrix highlights that our archi-
tecture minimized false negatives, a critical metric in
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Figure 5: Confusion matrix of the proposed model on
the test dataset, showing the classification results for
the Parasitized and Uninfected classes.

(a)

Grad-CAM Heatmap

Figure 6: Grad-CAM visualization applied on a (a) train
and (b) test sample from the Parasitized class using the
final convolutional layer of the neural network. Left to
Right: Original image, Grad-CAM heatmap highlight-
ing the regions of activation, and Overlay for Feature
Activation Analysis.

malaria detection, where under-diagnosis could lead to
life-threatening consequences.

Table 1: Classification Results for Parasitized and Un-
infected Classes. Prec.: Precision, Rec.: Recall, F1:

F1-score.
Method Parasitized Uninfected
Prec. | Rec. | F1 | Prec. | Rec. | F1
ResNet50 0.82 | 0.52 | 0.64 | 0.65 | 0.89 | 0.75
DenseNet121 | 0.97 | 0.93 | 0.95 | 0.93 | 0.97 | 0.95
Mutual Info 0.93 | 093 | 0.93 | 0.94 | 0.93 | 0.93
Proposed 0.98 | 0.93 | 0.94 | 0.93 | 0.98 | 0.95

In summary, the proposed custom CNN demonstrates
superior performance in terms of accuracy, Fl-score,
and statistical reliability compared to baseline models.
The combination of a robust architecture and thorough
preprocessing techniques ensures its effectiveness for au-
tomated malaria cell classification.

5 Conclusions

The proposed CNN architecture developed in this
study outperforms other models, including 5-fold cross-
validation, mutual information, and pretrained models
such as DenseNet121 and ResNet50, achieving the high-
est accuracy of 96.15% on the test dataset. Statistical
analysis, including confidence intervals and significance
testing (p = 0.00047), confirms the model’s reliability
and makes it a viable solution for real-world deploy-
ment.

By leveraging a custom architecture tailored for
malaria classification, the proposed model demonstrates
a significant improvement over traditional and pre-
trained methods. This confirms its effectiveness in
distinguishing between parasitized and uninfected cells
with high accuracy and reliability.

The success of this approach underscores its poten-
tial for practical deployment in low-resource settings,
addressing critical gaps in automated malaria diagnosis.
Future research can explore integrating this model with
lightweight architectures or real-time diagnostic tools to
enhance its scalability and usability.

Future research could explore integrating the pro-
posed CNN with lightweight architectures for real-time
deployment on mobile devices, particularly in remote
areas. Additionally, incorporating unsupervised learn-
ing techniques to handle unlabeled data could further
enhance the model’s robustness.
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