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Abstract

Clustering is a crucial aspect of data mining and ma-
chine learning, and its performance can significantly de-
pend on parameter selection. The DBSCAN algorithm,
known for its efficacy in detecting clusters of arbitrary
shapes, relies heavily on its two parameters: Eps and
MinPts. This paper presents an enhanced version of the
Multi-Objective Genetic Algorithm (MOGA) for opti-
mizing the parameters of DBSCAN, named Enhanced
MOGA-DBSCAN. Our approach incorporates a modi-
fied Outlier Index that accounts for the density of clus-
ters, providing a better evaluation of outliers. Addi-
tionally, we parallelized the computation of the Out-
lier Index to significantly reduce the runtime, enabling
practical applicability to larger datasets. Experimental
results on two benchmark datasets demonstrate that
Enhanced MOGA-DBSCAN outperforms the original
MOGA-DBSCAN algorithm, achieving higher Silhou-
ette scores and Rand indices while requiring less com-
putational time. This advancement not only improves
clustering efficiency but also offers more meaningful in-
sights into the underlying data structure.

1 Introduction

Clustering is a fundamental task in data mining and
machine learning [1], which involves grouping a set of
objects in such a way that objects in the same group
(called a cluster) are more similar to each other than to
those in other groups. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) is a widely used
clustering algorithm known for its ability to find clus-
ters of arbitrary shape and its effectiveness in detecting
outliers [2]. However, the performance of DBSCAN is
highly dependent on two critical parameters: Eps (the
radius around a point) and MinPts (the minimum num-
ber of points required to form a dense region). Selecting
appropriate values for these parameters is a challenging
problem, particularly in the absence of prior knowledge
about the dataset’s structure [3].

Multi-Objective Genetic Algorithms (MOGA) have
been successfully applied to optimize the parameters of
DBSCAN by treating the clustering task as a multi-
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objective optimization problem. MOGA-DBSCAN
leverages genetic algorithms to explore a wide range of
parameter settings, optimizing two or more objective
functions simultaneously. In this context, the Silhouette
index, which measures the compactness and separation
of clusters, is used as one of the objective functions.
Another objective function considered is the Outlier In-
dex, which focuses on the degree of separation between
detected outliers and the clusters [4].

Despite the effectiveness of the original Outlier In-
dex, it treats all clusters equally without considering
their density, which can lead to suboptimal results. For
instance, an outlier that is equally distant from two clus-
ters, one dense and the other sparse, would be penalized
the same way, regardless of the cluster’s density. This
approach fails to account for the fact that outliers are
more significant when they are far from dense clusters
compared to sparse ones.

In this paper, we propose an enhanced version of the
MOGA-DBSCAN algorithm [4], which incorporates a
modified Outlier Index that accounts for cluster density.
Our Enhanced Outlier Index provides a more nuanced
evaluation by scaling the distance of outliers from clus-
ters based on the density of the clusters. To further
improve the algorithm’s practicality, we parallelized the
computation of the Outlier Index, significantly reducing
the runtime and making the algorithm more suitable for
larger datasets. This improvement addresses the limi-
tations of the original Outlier Index and leads to more
accurate and meaningful clustering results, especially in
datasets with varying cluster densities.

The proposed Enhanced MOGA-DBSCAN algorithm
is evaluated on two benchmark datasets, demonstrating
its superiority not only in terms of clustering quality and
outlier detection but also in computational efficiency. In
the following sections, we detail the methodology behind
the Enhanced MOGA-DBSCAN, present experimental
results, and discuss the implications of our findings in
the context of density-based clustering.

2 Methodology

The proposed Enhanced MOGA-DBSCAN algorithm
aims to optimize the DBSCAN clustering process by
framing it as a multi-objective optimization problem.
The algorithm utilizes a genetic algorithm to explore
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various combinations of the DBSCAN parameters Eps
and MinPts, with the objective of maximizing two met-
rics: the Silhouette index and the Enhanced Outlier
Index.

2.1 Enhanced Outlier Index

The original Outlier Index computes the average min-
imum distance of outliers to the nearest clusters, but
it does not account for cluster density [5]. This limita-
tion can lead to inaccurate results, especially in datasets
with clusters of varying densities. To overcome this, we
propose an Enhanced Outlier Index that integrates clus-
ter density into its computation, while addressing two
key challenges: (1) improving computational efficiency
through parallelization, and (2) normalizing densities to
handle very sparse or very dense clusters effectively.

The Enhanced Outlier Index is defined as follows:

1

n

n∑
i=1

(
min

1≤j≤m
(dij)×Normalized Densityj

)
, (1)

where:

• n is the number of outliers.

• dij is the distance of outlier i from cluster j.

• m is the number of clusters.

• Densityj is the density of cluster j, computed as the
inverse of the average distance from the centroid of
cluster j.

• Normalized Densityj is the density of cluster j, nor-
malized relative to the densities of all clusters, and
is computed as:

Densityj −min(Densityk)

max(Densityk)−min(Densityk)
+ ϵ (2)

where k ∈ {1, 2, . . . ,m} represents all clusters.

2.1.1 Rationale for Normalization

Normalization ensures that all cluster densities lie
within the range [0, 1], limiting the influence of extreme
density values. This adjustment addresses cases where
clusters are either extremely sparse or extremely dense,
ensuring that the Enhanced Outlier Index remains ro-
bust and meaningful across a wide range of datasets.

2.1.2 Parallelization of Density Computation

The time complexity of density computation is O(n),
where n is the number of data points. For large datasets,
this computation becomes expensive. To address this is-
sue, we implemented a parallelization strategy for the

key steps involved in the Enhanced Outlier Index com-
putation. The process is divided into the following com-
ponents:

The complete algorithm for parallelizing the En-
hanced Outlier Index computation consisted of the fol-
lowing steps:

1. Preprocessing:

• We computed the centroids of all clusters in
parallel.

• Data points and outliers were assigned to
workers for further processing.

2. Parallel Density Calculation:

• Clusters were divided among workers.

• Each worker computed Densityj for its as-
signed clusters.

• We gathered all Densityj values to the main
process.

3. Normalize Densities:

• We computed min(Densityk) and
max(Densityk) using a parallel reduction.

• These values were broadcast to all workers.

• Each worker normalized Densityj in parallel.

4. Outlier Distance Computation:

• Outliers were divided among workers.

• Each worker computed distances dij of its as-
signed outliers to all cluster centroids.

• Each worker found min(dij) for each outlier
and multiplied it by Normalized Densityj .

• Partial sums were sent to the main process.

5. Parallel Aggregation:

• We used a parallel reduction to sum the con-
tributions of all outliers across workers.

• The total was divided by n to compute the
final EOI.

2.2 Motivation for the Enhanced Outlier Index

The Enhanced Outlier Index is designed to address the
shortcomings of the original Outlier Index, particularly
in scenarios with clusters of varying densities:

• Scenario 1: An outlier o is located at a distance
x from a dense cluster c1. Figure 1 illustrates this
case.

• Scenario 2: The same outlier o is located at the
same distance x from a sparse cluster c2. Figure 2
illustrates this case.

324



Eyvazi et.al. Enhanced MOGA-DBSCAN Amirkabir University of Technology, October 23-24, 2024

Figure 1: Scenario 1: Outlier o at distance x from a
dense cluster c1.

Figure 2: Scenario 2: Outlier o at distance x from a
sparse cluster c2.

In the original Outlier Index, both scenarios would
penalize the outlier o equally, as the metric considers
only the distance x. However, this approach fails to
account for the fact that outliers close to dense clusters
should be penalized more heavily than those close to
sparse clusters.

The Enhanced Outlier Index resolves this issue by in-
corporating the normalized density of clusters into the
calculation. In Scenario 1, where c1 is dense, the penalty
for the outlier is higher. Conversely, in Scenario 2, where
c2 is sparse, the penalty is lighter. This adjustment pro-
vides a more accurate representation of the significance
of outliers relative to the clustering structure, resulting
in improved clustering quality [6].

2.3 Enhanced MOGA-DBSCAN Process

The Enhanced MOGA-DBSCAN process begins with
the initialization of a population of candidate solutions,
where each solution represents a pair of DBSCAN pa-
rameters Eps and MinPts. The initial population is
generated within bounds determined by Delaunay tri-
angulation, ensuring a diverse and high-quality set of
candidate solutions [7].

The algorithm iteratively applies mutation and
crossover operators to generate new solutions, which
are then evaluated using the two objective functions:

the Silhouette index and the Enhanced Outlier Index
[8]. A non-dominated sorting approach, combined with
a crowding distance mechanism [9], is used to select the
next generation of solutions, guiding the population to-
wards Pareto-optimal solutions [10].

To accelerate convergence, a statistical t-test is em-
ployed to compare the performance of the current
Pareto front with that of previous generations. If the
null hypothesis is accepted, indicating no significant im-
provement, the algorithm terminates early. Otherwise,
the process continues until the maximum number of gen-
erations is reached or the stopping criterion is satisfied.

At the end of the optimization process, the algorithm
outputs a set of Pareto-optimal solutions, allowing users
to select the optimal value themselves.1

2.4 Time Complexity of MOGA-DBSCAN

The time complexity of MOGA-DBSCAN depends on
the time complexities of three primary components:
DBSCAN, NSGA-II (Non-dominated Sorting Genetic
Algorithm II), and the Delaunay triangulation. The
overall time complexity is expressed as follows:

O (g × (O(fitness) +O(n log n))) (3)

Where:

• g is the number of generations.

• O(fitness) indicates the time complexity of the clus-
ter validity indices used as objective functions.

• n is the total number of data points.

The time complexity of DBSCAN and the Delaunay
triangulation is O(n log n). NSGA-II has a time com-
plexity of O(MN2), where M is the number of objec-
tives and N is the population size. Given that M and N
are much smaller than the total number of data points
(n), the overall complexity of NSGA-II can be consid-
ered O(1) relative to the total dataset size.

In the context of MOGA-DBSCAN, O(fitness) con-
sists of the time complexities of the silhouette index
and the outlier index. The silhouette index has a time
complexity of O(n2), while the original outlier index has
a time complexity of O(n×m), where m is the number
of clusters. Therefore, the overall time complexity of
MOGA-DBSCAN is dominated by the silhouette index,
yielding:

O
(
g ×

(
n2 + n log n

))
(4)

1The implementation details and source code for the En-
hanced MOGA-DBSCAN algorithm are available at https:

//github.com/HosseinEyvazi/Density-Adjusted-MOGA-DBSCAN/

tree/main.
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2.5 Time Complexity of Enhanced MOGA-
DBSCAN

In Enhanced MOGA-DBSCAN, the outlier index used
in MOGA-DBSCAN is replaced by the Enhanced Out-
lier Index. The Enhanced Outlier Index is computed as
follows:

Densityj −min(Densityk)

max(Densityk)−min(Densityk)
+ ϵ, (5)

The time complexity of computing the Enhanced
Outlier Index is O(n × m), the same as the original
outlier index beacuse the time complexity of computing
the density of a cluster is equal to size of that’s cluster ,
also m is O(1). Thus, the time complexity for the fitness
function in Enhanced MOGA-DBSCAN is:

O(fitness) = O(n2) (6)

This is still dominated by the silhouette index, so the
overall time complexity of Enhanced MOGA-DBSCAN
remains:

O
(
g ×

(
n2 + n log n

))
(7)

Given that n2 dominates n log n, the time complexity
can be simplified to:

O
(
g × n2

)
(8)

This shows that the introduction of the Enhanced Out-
lier Index does not increase the overall complexity of the
algorithm compared to the original MOGA-DBSCAN.

2.6 Results on the Custom 3-Cluster and Network
Datasets

The evaluation of the Enhanced Outlier Index and run-
time improvements was conducted using two datasets:
a custom 3-cluster dataset with varying densities and
a network dataset. The results, displayed in Figures 3,
4, 5, and 6, highlight the comparative performance of
MOGA-DBSCAN and Enhanced MOGA-DBSCAN.

The Enhanced MOGA-DBSCAN demonstrated su-
perior clustering quality and reduced runtime for both
datasets. A detailed comparison is provided below:

• Custom 3-Cluster Dataset:

– MOGA-DBSCAN:
Silhouette Score: 0.7095
Rand Index: 0.9562
Runtime: 19.8192 seconds

– Enhanced MOGA-DBSCAN:
Silhouette Score: 0.7369
Rand Index: 0.9926
Runtime: 16.4516 seconds

Enhanced MOGA-DBSCAN achieved a higher Sil-
houette Score and Rand Index, reflecting improved
clustering quality. Additionally, it reduced the run-
time by approximately 3.37 seconds compared to
MOGA-DBSCAN.

Figure 3: Clustering result of MOGA-DBSCAN on the
custom 3-cluster dataset.

Figure 4: Clustering result of Enhanced MOGA-
DBSCAN on the custom 3-cluster dataset.

• Network Dataset:

– MOGA-DBSCAN:
Silhouette Score: 0.4355
Rand Index: 0.6743
Runtime: 373.0894 seconds

– Enhanced MOGA-DBSCAN:
Silhouette Score: 0.7089
Rand Index: 0.9858
Runtime: 254.7385 seconds

Enhanced MOGA-DBSCAN significantly improved
clustering performance with a much higher Sil-
houette Score and Rand Index. It also achieved
a remarkable runtime reduction of over 118 sec-
onds, showcasing substantial computational effi-
ciency gains.
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Figure 5: Clustering result of MOGA-DBSCAN on the
network dataset.

Figure 6: Clustering result of Enhanced MOGA-
DBSCAN on the network dataset.

Overall, Enhanced MOGA-DBSCAN consistently de-
livered better clustering metrics and faster execution
times compared to MOGA-DBSCAN, demonstrating
the practical benefits of the proposed enhancements.

2.7 Discussion

The experimental results highlight the effectiveness of
the Enhanced MOGA-DBSCAN algorithm in address-
ing the limitations of the original MOGA-DBSCAN.
Key findings include:

Clustering Quality: The enhanced algorithm
achieved noticeable improvements in both Silhouette
Scores and Rand Indices:

• For the custom 3-cluster dataset, the Silhouette
Score improved from 0.7095 to 0.7369, and the
Rand Index increased from 0.9562 to 0.9926.

• For the network dataset, the Silhouette Score in-
creased from 0.4355 to 0.7089, and the Rand Index
rose from 0.6743 to 0.9858.

Computational Efficiency: The Enhanced
MOGA-DBSCAN significantly reduced runtime while
maintaining or improving clustering performance:

• For the custom 3-cluster dataset, the runtime de-
creased by approximately 3.37 seconds, offering a
balance between accuracy and efficiency.

• For the network dataset, the runtime dropped from
373.0894 to 254.7385 seconds, a reduction of over
30%.

These results confirm that the Enhanced MOGA-
DBSCAN algorithm successfully improves clustering
quality and computational efficiency, making it better
suited for practical, real-world applications.

3 Future Work

While Enhanced MOGA-DBSCAN shows promising re-
sults, several avenues for future research remain:

3.1 Time Complexity Optimization

The current time complexity of O(g × n2) could be re-
duced through:

• Implementation of better Silhouette score calcula-
tion to achieve lower complexity .

• Optimization of density calculations .

3.2 High-Dimensional Adaptations

To enhance performance in high-dimensional spaces, fu-
ture work will focus on:

• Development of specialized distance metrics for
high-dimensional clustering

• Implementation of feature relevance weighting
mechanisms

These improvements would extend the algorithm’s
applicability to more complex datasets while maintain-
ing its computational efficiency. Additionally, exploring
online learning capabilities for streaming data could fur-
ther enhance the algorithm’s practical utility.
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