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Abstract

The paper introduces a novel method for detect-
ing schizophrenia by analyzing electroencephalogra-
phy (EEG) signals using convolutional neural networks
(CNNs). Schizophrenia, a serious mental health condi-
tion, is often diagnosed through subjective clinical as-
sessments, which can lead to inconsistent or delayed
outcomes. To address these challenges, the proposed
approach leverages EEG, a non-invasive technique with
high temporal resolution for recording brain activity.
The method begins by preprocessing the raw EEG data
with Independent Component Analysis (ICA) to remove
noise and artifacts such as eye blinks, muscle move-
ments, and electrical interference. Then, Continuous
Wavelet Transform (CWT) is applied to extract key
features, capturing both temporal and spectral informa-
tion crucial for distinguishing between healthy individ-
uals and those with schizophrenia. These features are
fed into a CNN, which excels at handling the 2D time-
frequency representations of EEG data, automatically
extracting features and identifying patterns in complex,
high-dimensional data. The CNN model was trained
on a public dataset containing EEG recordings from
schizophrenia patients and healthy controls, achieving
a classification accuracy of 94.77%, outperforming tra-
ditional machine learning methods like Support Vector
Machines (SVM) and Random Forests, which rely more
heavily on manually crafted features.
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1 Introduction

Schizophrenia is a complex, chronic mental health dis-
order that affects about 1% of people worldwide[1]. It is
one of the top 15 leading causes of disability globally, of-
ten leaving a significant impact on individuals and their
families. The condition presents a range of symptoms,
including hallucinations, delusions, disorganized think-
ing, and cognitive impairments. Early diagnosis and
timely intervention are crucial for better outcomes, yet
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achieving this remains a major challenge. Schizophre-
nia is highly diverse in its presentation, and its diagno-
sis still relies largely on subjective clinical evaluations.
Traditional diagnostic methods, involving in-depth in-
terviews and observations, demand specialized expertise
and can often lead to inconsistencies and delays, ulti-
mately worsening the prognosis for those affected.

In this context, there is a growing interest in devel-
oping automated diagnostic tools that leverage physio-
logical data, like EEG, to assist in detecting schizophre-
nia more efficiently[2]. EEG is a non-invasive technique
that measures the brain’s electrical activity through
electrodes placed on the scalp. Compared to other
neuroimaging methods, such as functional magnetic
resonance imaging (fMRI) or magnetoencephalography
(MEG), EEG has a distinct advantage: it provides high
temporal resolution, which is essential for capturing the
fast neural oscillations linked to cognitive and emo-
tional processes. Research has shown that EEG pat-
terns in people with schizophrenia differ notably from
those in healthy individuals, especially in specific fre-
quency bands like Delta, Theta, Alpha, and Gamma.
These changes in brain activity are connected to core
symptoms of schizophrenia, such as impaired cognitive
control, abnormal sensory processing, and disrupted
communication between brain regions[3].

However, analyzing EEG data for schizophrenia de-
tection comes with its own challenges. EEG signals are
complex, constantly changing, and vulnerable to noise
from various sources, such as muscle movements and eye
blinks. Traditional machine learning approaches, like
SVM and random forests, have been applied to these
signals with moderate success, often relying on hand-
crafted features like power spectral densities, coherence,
and phase synchrony measures[4]. While these methods
have been useful, they require extensive feature engi-
neering and domain expertise, and they might fall short
in capturing the intricate temporal dynamics indicative
of mental disorders.

Recent advancements in deep learning, particularly
CNNs, provide a promising alternative. CNNs can au-
tomate feature extraction and learn complex patterns
directly from raw or minimally processed data. Al-
though CNNs are commonly used in image-based tasks,
they also show great potential in analyzing EEG signals
by identifying spatial and temporal relationships in the
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data. In the context of schizophrenia detection, CNNs
can be adapted to process 2D representations of EEG
signals, like time-frequency maps, which capture both
the evolution over time and the frequency content of
brain activity [5].

In this study, we propose a CNN-based approach to
automatically detect schizophrenia using EEG data. To
achieve this, we transform raw EEG signals into 2D
time-frequency representations using CWT, a technique
well-suited for analyzing non-stationary signals [6]. This
transformation helps the model effectively utilize both
time and frequency information, which is key to dis-
tinguishing between healthy and schizophrenia-related
brain activity. Our contributions include:

Developing a robust preprocessing pipeline, utilizing
ICA and band-pass filtering, to improve signal quality
and remove common artifacts such as eye blinks and
muscle noise [7].

Proposing a novel CNN architecture designed to an-
alyze 2D time-frequency features derived from CWT,
enabling automatic feature extraction and classification
of EEG signals.

Conducting a comparative analysis of our proposed
CNN model against traditional machine learning meth-
ods on the same dataset, to assess the impact of time-
frequency features on classification performance.

Providing an in-depth analysis of the learned rep-
resentations, highlighting key patterns associated with
schizophrenia.

Our goal is to pave the way for more reliable and
accessible diagnostic tools, ultimately improving the
quality of care and outcomes for those living with
schizophrenia.

2 Methodology

2.1 Data Collection and Preprocessing

The dataset comprises 28 EEG recordings from two
groups: 14 healthy control subjects and 14 subjects di-
agnosed with schizophrenia. Each recording contains 19
EEG channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3,
Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) sampled at 250
Hz. The EEG signals were acquired during resting-state
conditions, which are known to reveal abnormalities in
neural oscillations in schizophrenia patients.

2.2 Signal Denoising and Artifact Removal

The raw EEG data is preprocessed using a series of steps
to remove noise and unwanted artifacts:

• Notch Filtering: A notch filter at 50 Hz and 60 Hz
is applied to remove powerline interference. The effec-
tiveness of this filtering is evaluated by inspecting the
power spectral density (PSD) of the EEG signals before
and after applying the filter. Specifically, a reduction

in the power at the targeted frequencies (50 Hz and 60
Hz) without affecting nearby frequency bands confirms
successful filtering[8].

• Independent Component Analysis: ICA is used
to identify and remove artifacts related to eye blinks,
muscle movements, and cardiac activity. While ICA is
effective at isolating artifacts, it has limitations. One
of the key challenges is its sensitivity to the number of
components selected. An inappropriate choice of com-
ponents can lead to either incomplete artifact removal
or the loss of meaningful neural signals[9]. Addition-
ally, ICA assumes statistical independence of compo-
nents, which may not always hold true for EEG data,
potentially affecting its artifact isolation performance.

• Band-pass Filtering: A band-pass filter (1-30 Hz) is
applied to capture the relevant EEG rhythms, includ-
ing Delta (1-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz),
and Beta (13-30 Hz). This frequency range was cho-
sen based on its relevance to cognitive processes and
its established associations with schizophrenia-related
neural oscillations[10]. Frequencies below 1 Hz are ex-
cluded to remove slow drifts caused by non-neural arti-
facts (e.g., sweat and electrode impedance), while fre-
quencies above 30 Hz are excluded to reduce noise from
muscle artifacts and electrical interference. The choice
of band-pass filter parameters can significantly affect
the results. For example, selecting a narrower frequency
range could result in the loss of diagnostically relevant
information, while a wider range might include noise
and artifacts, complicating feature extraction. The 1-
30 Hz range strikes a balance, capturing the key EEG
rhythms associated with schizophrenia while minimiz-
ing noise.

2.3 Feature Extraction Using Continuous Wavelet
Transform

The CWT is used to extract time-frequency features
from EEG signals. The Morlet wavelet is chosen because
it effectively captures both time and frequency details.
Unlike other wavelets, such as Haar or Daubechies, the
Morlet wavelet provides an optimal balance between
time and frequency resolution, which is critical for ana-
lyzing the non-stationary and oscillatory nature of EEG
signals. EEG data contains transient events and rhyth-
mic activity occurring over various timescales, and the
Morlet wavelet, with its Gaussian envelope, excels at de-
tecting such localized changes without significant smear-
ing in the time or frequency domains[11].

Additionally, the Morlet wavelet’s ability to produce
smooth and continuous representations of power across
frequency bands makes it particularly suited for identi-
fying patterns in EEG rhythms (e.g., Delta, Theta, Al-
pha, Beta), which are often linked to cognitive and neu-
ral processes affected in schizophrenia. This property
enables the extraction of subtle features crucial for dis-
tinguishing between healthy and schizophrenia-related
brain activity.
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To determine the scales for the CWT, an empirical
analysis is conducted, resulting in a range from 1 to
10. The CWT coefficients are then used to calculate
wavelet energy, which is normalized and converted into
a 2D matrix representing the time-frequency features
for each EEG channel.

2.4 Convolutional Neural Network Architecture

The CNN model used in this study is designed to cap-
ture the spatial features from the time-frequency rep-
resentation of the EEG signals, which were extracted
using the CWT. The CNN consists of multiple convolu-
tional and dense layers, structured as follows:

Convolutional Layers:

• The model begins with two convolutional layers,
each with 32 filters and a 3x3 kernel size, employing
the ReLU activation function. These layers intro-
duce non-linearity and help capture complex pat-
terns in the input.

• After applying a MaxPooling layer to reduce the
spatial dimensions, another pair of convolutional
layers, each with 32 filters, is added. These layers
continue to extract relevant features from the input
data.

• As the network deepens, two additional convolu-
tional layers, each with 64 filters and a 3x3 kernel,
are included, followed by another MaxPooling oper-
ation. This helps the model capture more complex
patterns by increasing the number of filters.

• Finally, the convolutional process is concluded with
three consecutive layers, each containing 128 filters
with a 3x3 kernel, followed by a MaxPooling layer.
This increases the depth of the feature maps and
enhances feature extraction for the subsequent clas-
sification layers.

Pooling Layers:

• After every two convolutional layers, a MaxPooling
layer is applied to downsample the feature maps,
making the model more computationally efficient
while preserving critical information.

Flatten Layer:

• After the final pooling layer, the 3D feature maps
are flattened into a 1D vector to be fed into the
fully connected layers.

Dense Layers:

• The model employs two fully connected (dense) lay-
ers, each with 512 neurons and ReLU activation, af-
ter flattening the feature maps. These layers help
in refining the learned representations before clas-
sification.

Output Layer:

• The output layer contains 2 neurons with a softmax
activation function, which generates probabilities
for the two classes (healthy vs. schizophrenia).

The CNN model is optimized using the Adam op-
timizer, with a learning rate of 0.0001. The model’s
loss is calculated using Sparse Categorical Crossentropy,
which works well for this kind of classification problem.
The architecture is designed to extract features step by
step—starting with simpler spatial features in the early
layers and moving to more complex, abstract ones in
the deeper layers. This approach helps the model effec-
tively differentiate between schizophrenia patients and
healthy individuals based on EEG data. Figure 1 visu-
ally illustrates the CNN model’s architecture, showing
the progression through convolutional, pooling, flatten,
and dense layers, along with their specific configura-
tions. This provides an easy-to-understand overview of
how features are extracted and classified step by step.

Figure 1: CNN Model Architecture

3 Experimental Results

In our experiments, the CNN model was trained for
60 epochs to evaluate its performance, focusing on ac-
curacy and loss during both training and validation
phases. We used 70% of the dataset for training and
validation, while reserving the remaining 30% as a test
set to assess the model’s generalization to new data.
Figure 2 shows the trends in accuracy and loss over
the training period for both datasets, providing insights
into the model’s learning progress. The accuracy plots
reveal a steady improvement throughout training, while
the loss curves consistently decrease, demonstrating the
model’s effectiveness in minimizing errors and learning
efficiently over time.

To further assess the model’s performance, we cal-
culated several key metrics, including precision, recall,
and accuracy. Precision is the ratio of true positives to
the sum of true positives and false positives, which in-
dicates how many of the predicted schizophrenia cases
were correctly identified:

Precision =
True Positives

True Positives + False Positives
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Recall, also known as sensitivity, represents the ra-
tio of true positives to the sum of true positives and
false negatives, reflecting how many actual schizophre-
nia cases were accurately detected by the model:

Recall =
True Positives

True Positives + False Negatives

Accuracy measures the overall correctness of the
model’s predictions, calculated as the ratio of correctly
predicted cases (both positive and negative) to the total
number of instances:

Accuracy =
True Positives + True Negatives

Total Number of Instances

Table 1 summarizes these metrics, with an accu-
racy of 94.77%, a precision of 94.95%, and a recall of
94.58%, indicating strong model performance in identi-
fying schizophrenia cases.

Metric Value
Accuracy 94.77%
Precision 94.95%
Recall 94.58%

Table 1: Model Performance Metrics

(a) Model Accuracy over Epochs

(b) Model Loss over Epochs

Figure 2: Training and Validation Performance: (a)
Model accuracy and (b) Model loss during training.

After training, we evaluated the performance of the
CNN model in the test set using a confusion matrix,
which is illustrated in Figure 3. The matrix compares
the model’s predictions with the actual outcomes, high-
lighting how effectively it distinguished between indi-
viduals with schizophrenia and healthy controls. The
model correctly identified most schizophrenia cases (179
true positives) and accurately classified the majority of
healthy individuals (145 true negatives). However, there
were a few misclassifications, with 19 healthy subjects
incorrectly labeled as having schizophrenia (false posi-
tives). Importantly, the model did not miss any cases of
schizophrenia, as there were no false negatives, meaning
every individual with schizophrenia was correctly iden-
tified. Although a small number of false positives oc-
curred, the overall performance suggests that the model
is a promising tool for accurately distinguishing between
schizophrenia patients and healthy individuals.
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Figure 3: Confusion matrix for the CNN model’s classi-
fication of schizophrenia patients and healthy controls.

4 Discussion

This study highlights the effectiveness of using CNNs
for classifying schizophrenia from EEG signals, espe-
cially when combined with time-frequency features ob-
tained through CWT. The model achieved a classifica-
tion accuracy of 94.77%, notably outperforming tradi-
tional methods like SVM and Random Forests that rely
on handcrafted features. The proposed CNN was able to
capture both spatial and temporal patterns in the EEG
data, effectively distinguishing between healthy individ-
uals and those with schizophrenia.

The ability of CNN to capture spatial and tempo-
ral patterns is particularly significant in the context of
schizophrenia, as the disorder is characterized by disrup-
tions in neural connectivity and rhythmic oscillatory ac-
tivity. Spatial patterns in the EEG signals, reflected in
the differences across various electrode locations, can in-
dicate altered functional connectivity and abnormal re-
gional brain activity, commonly observed in schizophre-
nia. For example, interrupted activity in the frontal
and temporal regions has been associated with impaired
executive function and auditory hallucinations, respec-
tively.

Similarly, temporal patterns, such as changes in the
power and phase of neural oscillations over time, provide
insight into the dynamic processes of the brain. Abnor-
malities in the Delta (1–4 Hz) and Theta (4–8 Hz) bands
are often linked to disrupted cognitive control and at-
tention, while alterations in the Alpha (8–13 Hz) and
Beta (13–30 Hz) bands are associated with sensory pro-
cessing deficits and impaired synchronization between
brain regions. The CNN’s capacity to process the 2D
time-frequency representations of these oscillations en-

ables it to identify these clinically relevant abnormalities
and correlate them with schizophrenia-specific brain ac-
tivity.

Using these spatial and temporal features, CNN can
effectively model complex interactions within and be-
tween brain regions, translating these patterns into
accurate classifications. This connection between the
characteristics learned by CNN and the clinical mani-
festations of schizophrenia underscores the potential of
this approach to advance objective automated diagnos-
tic tools.

Despite these strengths, some limitations remain, in-
cluding the relatively small dataset and a noticeable
number of false positives. Future studies could address
these issues by expanding the dataset and incorporating
multimodal data, such as fMRI or behavioral metrics,
to provide a more comprehensive understanding of the
disorder.

5 Conclusion

In this paper, we introduced a new approach using
CNNs to detect schizophrenia from EEG signals. We
transformed the EEG data into time-frequency repre-
sentations using CWT, which allowed us to capture
valuable features for analysis. By combining effective
preprocessing, wavelet-based feature extraction, and
deep learning classification, our model achieved im-
pressive accuracy, correctly identifying all schizophrenia
cases without false negatives. This suggests that CNNs
hold great promise for diagnosing mental disorders, pro-
viding a more automated and consistent alternative to
traditional clinical assessments, which are often subjec-
tive and time-consuming.

Despite these encouraging results, there are still some
challenges, such as the relatively small dataset and a no-
ticeable number of false positives. In the future, we aim
to apply this approach to larger datasets, experiment
with hybrid models, and integrate other brain imaging
methods to improve diagnostic precision. With contin-
ued development, our method could become a valuable
tool in clinical settings, helping facilitate earlier and
more objective diagnoses of schizophrenia and poten-
tially other neurological conditions.

References

[1] X. Li, N. Wei, J. Song, J. Liu, J. Yuan, R. Song, L. Liu,
L. Mei, S. Yan, Y. Wu, R. Pan, W. Yi, X. Jin, Y. Li, Y.
Liang, X. Sun, J. Cheng, and H. Su, The global burden
of schizophrenia and the impact of urbanization during
1990–2019: An analysis of the global burden of disease
study 2019. Environmental Research, 232, Article ID
116305, 2023. DOI: 10.1016/j.envres.2023.116305.

[2] A. Perrottelli, G. M. Giordano, F. Brando, L. Giuliani,
and A. Mucci EEG-based measures in at-risk men-

315



The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

tal state and early stages of schizophrenia: A system-
atic review. Frontiers in Psychiatry, 12, 2021. DOI:
10.3389/fpsyt.2021.653642.

[3] J. J. Newson and T. C. Thiagarajan, EEG frequency
bands in psychiatric disorders: A review of resting state
studies. Frontiers in Human Neuroscience, 12, 2019.
DOI: 10.3389/fnhum.2018.00521.

[4] D. Gordillo, J. R. da Cruz, E. Chkonia, et al., The EEG
multiverse of schizophrenia. Cerebral Cortex, 33(7),
2023, pp. 3816-3826. DOI: 10.1093/cercor/bhac309.

[5] A. Shalbaf, S. Bagherzadeh, and A. Maghsoudi, Trans-
fer learning with deep convolutional neural network
for automated detection of schizophrenia from EEG
signals. Physica Medica: Physics in Engineering
and Medicine, 43(4), 2020, pp. 1229-1239. DOI:
10.1007/s13246-020-00925-9.

[6] M. Rhif, A. Ben Abbes, I. R. Farah, B. Mart́ınez, and
Y. Sang, Wavelet Transform Application for/in Non-
Stationary Time-Series Analysis: A Review. Applied
Sciences, 9(7), 2019, 1345. DOI: 10.3390/app9071345.

[7] M. S. Navid, I. K. Niazi, D. Lelic, A. M. Drewes, and H.
Haavik, The Effects of Filter’s Class, Cutoff Frequen-
cies, and Independent Component Analysis on the Am-
plitude of Somatosensory Evoked Potentials Recorded
from Healthy Volunteers. Sensors (Basel), 19(11), 2019,
2610. DOI: 10.3390/s19112610.

[8] R. Wang, J. Wang, H. Yu, X. Wei, C. Yang, and B.
Deng, Power spectral density and coherence analysis
of Alzheimer’s EEG. Cognitive Neurodynamics, 9(3),
291–304, 2015. DOI: 10.1007/s11571-014-9325-x.

[9] J. Chen, V. D. Calhoun, and J. Liu, ICA order se-
lection based on consistency: application to genotype
data. Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC),
2012, pp. 360–363. DOI: 10.1109/EMBC.2012.6345943.

[10] G. Xavier, A. Su Ting, and N. Fauzan, Exploratory
study of brain waves and corresponding brain regions
of fatigue on-call doctors using quantitative electroen-
cephalogram. Journal of Occupational Health, 62(1),
e12121, 2020. DOI: 10.1002/1348-9585.12121.

[11] A. S. Al-Fahoum and A. A. Al-Fraihat, Methods
of EEG signal features extraction using linear analy-
sis in frequency and time-frequency domains. ISRN
Neuroscience, 2014, Article ID 730218, 2014. DOI:
10.1155/2014/730218.

316


	Session 3B
	A Convolutional Neural Network Approach to Schizophrenia Detection Based on Wavelet Transformed EEG Signals (Mohammad Reza Sheikh, Maliheh Sabeti)


