
Fuzzy Ex-RL: Fuzzy Experience-Based Reinforcement Learning

Ali Ghandi∗ Saeed Bagheri shouraki†

Abstract

Reinforcement Learning has proven to be a robust ap-
proach for addressing sequential decision-making prob-
lems, finding significant applications in both academic
research and industry. However, RL algorithms often
struggle with adaptability when there are slight changes
in environmental parameters. Transfer Learning offers
a promising solution by utilizing prior knowledge to ex-
pedite and improve the RL learning process under such
conditions.

To address these challenges, we introduce Fuzzy Ex-
RL, an enhancement of the Ex-RL algorithm[7] that
incorporates fuzzy models to improve transfer learning
capabilities. Fuzzy Ex-RL is designed to handle the
elasticity in patterns, thereby effectively mapping expe-
riences with differing skewness. This method is show-
ing significant improvements in both success rate and
sample efficiency. Our results indicate that Fuzzy Ex-
RL achieves approximately a 60% increase in success
rate and improvement in sample efficiency compared to
traditional RL methods. Moreover, in transfer learning
scenarios, Fuzzy Ex-RL outperforms the original Ex-RL
by about 25%.

Keywords: Reinforcement Learning, Transfer Learn-
ing, and Experience-based learning

1 Introduction

Reinforcement Learning (RL) has established itself as a
robust and effective methodology for solving sequential
decision-making problems. In this framework, an agent
iteratively interacts with an environment, refining its
performance through a process of trial and error. This
ability to adapt has made RL invaluable across various
academic and industrial applications, particularly where
traditional approaches have fallen short.

Recent advancements have seen the integration of
Deep Learning (DL) into RL tasks, forming a hybrid
model that has gained considerable attention. DL ad-
dresses specific RL challenges, such as handling high-
dimensional input spaces and improving scalability, by
employing powerful function approximators. These
approximators effectively distill high-dimensional data

∗Department of electrical engineering, Sharif University of
Technology

†Department of electrical engineering, Sharif University of
Technology, https://ee.sharif.edu/ bagheri-s/

into more manageable low-dimensional representations,
enhancing the RL agent’s learning efficiency.

In practical applications of RL, environment mod-
els are usually unknown. Agents are often required
to gather extensive interaction experiences before they
can effectively utilize their understanding of the envi-
ronment for improved performance. Issues like partial
observability, sparse and delayed feedback, and high-
dimensional observation and action spaces exacerbate
this challenge, making sample acquisition both costly
and potentially unsafe. This is particularly pertinent in
high-stakes domains like autonomous driving and health
informatics[11].

To address these challenges, leveraging prior knowl-
edge to accelerate the learning process becomes crucial.
This is where Transfer Learning (TL) comes into play.
TL enables the use of external knowledge to speed up
and enhance the learning process in RL, making it a
significant area of research[17, 22]. By incorporating in-
sights gained from previous tasks, TL can help overcome
the limitations inherent in purely trial-based learning
approaches, thereby improving overall efficiency and
safety.

TL in RL, is more complex than supervised learn-
ing due to the various components of a Markov Deci-
sion Process (MDP). The source of knowledge and its
target can differ greatly within an MDP. Additionally,
expert knowledge can come in different forms and be
transferred through various means, especially when us-
ing deep neural networks.

To make it more clear we represent an MDP with
M = (µ0, S,A, T , γ, R) the first three components Are
the initial state, the state space, and the action space
respectively. T : S × A × S → R is the transition
probability, which specifies the probability of moving
to state s′ from state s when taking a specific action.
R : S × A × S → R is the reward distribution that fol-
lows the transition. An RL agent operates in an envi-
ronmentM by following a policy π, which indicates the
probability of taking action a when in state s. The value
function(V π) measures how good it is to be in state s by
estimating the expected rewards the agent can receive
from state s, assuming it continues to follow policy π
in M. It is also possible to estimate the quality of an
action in a specific state using the Q-function, based on
the definition of the value function[18]. Thus, the goal
in RL is to find an optimal policy that maximizes the
discounted cumulative reward or value function within

281

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

the state space.

Qπ
M(s, a) = Es∼P (s,a,s′) (R(s, a, s′) + γV π

M(s′)) (1)

Using transfer learning, an agent aims to learn the op-
timal policy for a target domain by utilizing information
from both the target domain (Dt) and source domains
(Ds). Suppose Ms represents a single source domain
chosen from a set of source MDPs(Ms) and Mt de-
notes the target MDP. In the simplest case, where the
set Ms contains only one element, Mt is the same as
Ms. In a typical RL loop without TL, where no exter-
nal information is available, Ds is null.

π∗ = arg max
π∼Ds,Dt

Es∼µt
0,a∼π [Q

π
M (s, a)] (2)

2 Background

This study focuses on improving the approach to trans-
fer learning in RL proposed by Ghandi et al.[7, 6] called
Ex-RL. Before discussing any potential enhancements
for Ex-RL, it is essential to review similar methods.

2.1 Reward Shaping

In TL utilizing a reward shaping approach, the sole
modification to the MDP occurs within the reward
function. Here, the agent learns a reward function
F : S × A × S → R that incorporates prior knowledge
to guide the agent toward beneficial states by assigning
higher reward values.

M = (µ0, S,A, T , R)→M′ = (µ0, S,A, T , R+F) (3)

[14]introduced Potential-Based Reward Shaping
(PBRS), which stands as one of the foundational
techniques in the domain of reward shaping. In this
approach, the reward shaping function F is defined
as the disparity between two real-valued functions
Φ : S → R.

F (s, s′) = γΦ(s′)− Φ(s) (4)

PBRS is both a necessary and sufficient condition
to guarantee policy invariance within the target MDP.
Specifically, the optimal Q-function in the Mt, can be
derived from that in the Ms, by incorporating a sub-
tracted Φ(s). In extended approaches[20], actions are
considered similarly to the vanilla approach. The re-
ward shaping function F is now defined by differentiat-
ing between potential functions that depend on both the
state and action variables. This imposes a limitation on
extended forms, primarily requiring on-policy learning.

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a) (5)

Several methodologies incorporating potential-based
approaches, such as the Dynamic Potential-Based
method[4], which integrates a time parameter, and the
Dynamic Value-Function Advice approach[8], which are
not the focus of this study.

Beyond those approaches, innovative strategies have
been proposed to leverage reward shaping for transfer-
ring an expert policy from a source environmentMs to
a target environmentMt. In the study[1], the authors
posit the existence of two mapping functions, MA and
MS , which transform states and actions between two
MDPs. By utilizing these mappings, each state and ac-
tion in theMt, can be converted to their corresponding
counterparts in the source domain. This conversion al-
lows the authors to derive probability distributions of
states and actions from the expert policy in the source
domain. These derived probabilities can then be used
to shape the reward structure in theMt.

All of the aforementioned approaches require thatMt

and Ms be identical, except in the context of the re-
ward function. However, [19] proposed a method that
bypasses this prerequisite by utilizing πs as prior knowl-
edge. Notably, such prior knowledge is often not avail-
able.

2.2 Learning from Demonstrations

In this methodology, demonstrations are obtained from
various sources and presented in the form of transition
tuples:(s, a, s′, r). These demonstrations may be derived
from both optimal and near-optimal experts. Most re-
search typically focuses on cases where the source and
target MDPs are the same. Leveraging these demon-
strations, an agent can initialize its value function or
policy via offline methods. In contrast, within online
settings, these demonstrations can be utilized to en-
hance the agent’s exploration strategy.

Learning from demonstration has mostly been stud-
ied in the context of policy gradient methods. How-
ever, it can also be applied using policy iteration[3]
or temporal-difference(TD) learning methods[21]. In
the referenced study [3], the agent samples from self-
generated data(Dπ) and combines it with external
demonstrations(DE) provided by an expert policy. The
agent estimates Q-values using a greedy algorithm. To
ensure the policy π aligns closely with the expert’s de-
cisions, a loss function is used that increases whenever
the agent’s decisions differ from the expert’s.

L(π, πE) =
1

NE

NE∑
i=1

{1{πE(si) ̸=π(si)}}. (6)

[15]introduced the Deep Q-learning from Demonstra-
tion algorithm, which leverages dual replay buffers, des-
ignated as Dπ and DE , to manage the sampling ra-
tio between agent experiences and expert demonstra-

282

Ghandi et.al. Fuzzy Experience-based RL Amirkabir University of Technology, December 18-19, 2024

tions. The DE buffer employs a prioritized replay
schema, wherein the sampling probability of a transi-
tion i is determined by its priority pi. It’s prioritize

using P (i) =
pα
i∑

k pα
k
which modulated by a temperature

parameter α.
In another study [2], the author employed potential-

based reward shaping methods in conjunction with
learning from demonstrations. This approach defines
a potential-based function over expert demonstrations,
so that provides greater rewards for states and actions
that resemble those of the expert demonstrations. This
mechanism effectively induces behavior akin to that of
an expert.

[13] introduced an imitation learning technique, in-
spired by demonstration learning, designed to clone
expert behavior using a policy gradient algorithm.
Their approach involves defining a loss function based
on demonstration samples, which penalizes the model
whenever it makes decisions that diverge from those of
the expert. In its extended form, the method imposes a
loss penalty exclusively when the critic assigns a lower
value to the Q-function, as opposed to simply selecting
actions consistent with the demonstration data.

LBC =

|DE |∑
i=1

∥π(si|θπ)− ai∥2 1 [Q(si, ai) > Q(si, π(si))]

(7)
In another method, Generative Adversarial Imitation
Learning (GAIL)[10] employs a discriminator trained
to differentiate between interactions sampled from the
current policy and those from the expert policy. Each
policy represents a distribution over state-action pairs.
Minimizing the divergence between these distributions
attempts to confuse the discriminator, making it indis-
tinguishable whether an interaction originates from the
agent or the expert. Consequently, the agent’s policy,
π, becomes more akin to the expert policy πE . Given
that the πE is unknown, learning from demonstrations
aids the agent in estimating the state-action distribu-
tion. Therefore, the agent endeavors to perform distri-
bution matching in the following manner:

max
π

min
D→(0,1)

J(π,D) :=

Edπ
[log (1−D(s, a))] + EdE

[log (D(s, a))]

:= −DJS [dπ∥dE]
(8)

Despite the wide range of methods available for learn-
ing from demonstrations, several challenges remain.
Firstly, increasing the size of the demonstration dataset
requires storing all expert data, which can be memory-
intensive. Additionally, most approaches assume that
demonstrations are near-optimal; however, in practice,
demonstrations may be imperfect due to noise[9], biased

estimations of the MDP, or suboptimal expert perfor-
mance. Although techniques such as regularization and
relaxed constraints have been proposed to address these
issues, they often do not ensure policy invariance during
the learning process. Moreover, agents typically rely on
a limited set of demonstrated data compared to the di-
versity of self-generated samples, making them prone to
overfitting. Agents also lack guidance for state-action
pairs that are not included in DE . These challenges are
further exacerbated in environments with sparse reward
feedback. During exploration, deviations from demon-
strated trajectories and samples are common, especially
in the early episodes, due to the inherent randomness
in action selection.

2.3 Ex-RL: Experience-Based RL

[7] proposed a novel approach for TL in RL applications,
Ex-RL, which synergistically integrates reward shaping
with Learning from Demonstration techniques. Similar
to demonstration-based methods, this technique utilizes
data gathered from multiple near-optimal expert trajec-
tories. However, rather than storing all transition tu-
ples, a Hidden Markov Model (HMM) [12] is employed
to identify patterns within these trajectories. Using Ex-
RL obviates the need for memory expansion by contin-
ually adding new demonstrations, thereby optimizing
computational efficiency.

The HMM subsequently functions as a critic for the
new agent, incentivizing it to replicate the trajectories
selected by the expert agents. This process is akin to
reward shaping, wherein the HMM outputs the likeli-
hood of multiple steps as an augmented reward, in com-
bination with the environmental reward. Trajectories
aligning closely with expert demonstrations are priori-
tized by reward function. In certain cases, the HMM
behaves as a potential-based function, thus preserving
policy invariance. Similar to existing reward shaping
techniques, the proposed Ex-RL approach is model-
agnostic. Authors have applied the same methodology
across various reinforcement learning paradigms[??], in-
cluding deep policy gradient methods and traditional
methods like Temporal Difference or policy iteration
learning. The HMM is especially good at dealing with
imperfect examples because it is built on strong statis-
tical methods. It can effectively reduce the impact of
biases or errors that might be present in different sets of
data. This makes HMM a valuable tool for maintaining
the accuracy and reliability of the systems it models.

While previous studies often emphasize theMt=Ms

condition, the Ex-RL framework overcomes this chal-
lenge through delta mapping. The authors introduce a
delta mapping mechanism that divides any state space S
into a set of super states. For example, in tasks like the
ball-and-beam and cart-pole, the objective is to balance
an object around a central line. Delta mapping breaks

283

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

down the state space into four regions: moving forward
or backward on either side of this balance line.

The ball-and-beam and cart-pole tasks, despite hav-
ing distinct MDPs characterized by unique parameters
such as action and state spaces, can be transformed into
a unified task of object balancing through delta map-
ping. This approach involves the abstraction of numer-
ical values into more generalized descriptions, thereby
facilitating the learning and transfer of concepts across
different MDPs by HMMs. While the agent learns the
specific details of the environment, the HMM aids in
navigating the more abstract objective of balancing the
object, which in turn promotes more efficient explo-
ration by the agent.

Despite Ex-RL addressing some challenges associated
with reward shaping and demonstration methods, it still
faces significant issues in certain applications. Consider
the Pendulum and Mountain Car tasks as examples. In
the Pendulum task, the agent aims to reach a target po-
sition by adjusting its momentum through forward and
backward movements. Similarly, in the Mountain Car
task, the agent must perform anti-balancing actions to
climb the right hill. Although these two MDPs are fun-
damentally different, delta mapping theoretically allows
for similar movement patterns, enabling the transfer of
experience between them.

However, in practice, solving the Mountain Car task
typically requires more steps due to the environment’s
physical dynamics, leading to a skewed behavior in the
agent. In contrast, movements in the Pendulum task
are analogous but occur much more rapidly. The HMM
module fails to adequately account for temporal and
speed variations in these patterns, further complicating
effective transfer learning.

To address this issue, this paper focuses on enhancing
the Ex-RL framework[6, 7] by mitigating the skewness
in patterns for transfer learning. We propose a novel
approach that incorporates a variation of the fuzzy elas-
tic matching machine(FEMM)[16], which is designed to
better handle differences in time and speed within move-
ment patterns. This contribution aims to improve the
robustness and effectiveness of transfer learning in Ex-
RL, enabling more seamless experience transfer between
disparate tasks.

3 Proposed Method

To address the problem of HMM in Ex-RL, Fuzzy Ex-
RL uses a FEMM. FEMM is a fuzzy sequential pat-
tern recognition tool that compares input data against
a fuzzy elastic pattern. Consider a FEMM denoted as
λ = (R,P), where R and P are fuzzy vectors repre-
senting the duration(Run time) and features of patterns
within a super state. A super state is defined as an array
of observations.

Figure 1: The completed pathway of the mountain car
task is segmented using change points, with each seg-
ment forming a ”super state” that encompasses specific
observations. These super states are characterized by
fuzzy pattern descriptors. Each dot in the figures rep-
resents an observation, where the Y-axis indicates the
car’s position.

An agent’s observation may have k dimensions. For
each dimension, m fuzzy descriptors can be employed,
typically using the k-means method. Each pattern de-
scriptor consists of k membership functions, which char-
acterize each dimension of the observation. The term
P l
sr (O

n
i) denotes the membership level of the ith di-

mension of observation n, associated with the lth set of
fuzzy membership functions relevant to the rth super
state.

Let’s assume that the centroid of cluster i is repre-
sented as ci. We can then calculate the membership
value to a pattern descriptor using equation 9.

µx
ci =

(∑
c

(
∥x− ci∥
∥x− c∥

) 2
m−1

)−1

(9)

The process of assigning a value to a k-dimensional
fuzzy vector involves multiplying the membership val-
ues of each vector element. Subsequently, the highest
membership value among all m vectors is selected. This
value is calculated using the max-product composition
method. In this compositional framework, the T-Norm
functions as the multiplication operator, while the S-
Norm serves as the addition operator. Equation 10
shows single observation membership value.

Psi (O
n) = max

j:1..m

(∏
k

P j
si (O

n
k)

)
(10)

A trajectory includes several observations made from
different actions in an environment.The membership

284

Ghandi et.al. Fuzzy Experience-based RL Amirkabir University of Technology, December 18-19, 2024

Time

Figure 2: FEMM state membership value analysis, tran-
sitions between different rows indicate a change in state,
while movement within the same row signifies the state
remains unchanged

function for a trajectory is found by multiplying the
membership values of each individual observation. Each
trajectory has a duration, which should be represented
by D, as described in the original study.

Psi

(
Ot1 , . . . , Otn

)
= Di(n)

tn∏
t=t1

Psi

(
Ot
)

(11)

Figure 1 presents a trajectory of the Mountain Car,
with the x-axis representing the steps and the y-axis de-
picting the car’s position within the environment. Each
scatter dot corresponds to a specific observation. Addi-
tionally, the membership functions for each super state
are illustrated in the figure.

The FEMM employs a Viterbi-like algorithm[5] on a
three-dimensional V matrix to determine the maximum
membership value of a sequence. A higher membership
value indicates a greater likelihood that the trajectory
of observations originates from previously learned fuzzy
patterns. In contrast, HMMs utilize probabilities to as-
sess the likelihood that observations derive from previ-
ously learned patterns. By considering the duration in
each state, FEMM is more suitable for learning elas-
ticity in data. The V (s, k, t) matrix records the maxi-
mum membership degree of a sequence of observations
(O1, ..., Ok) to an uninterrupted path from the initial
state to state s.

When using the Finite Element Method Magnetics
(FEMM), three types of events can occur. First, the
subsequent observation may belong to the current super
state. In this case, the V value for the path is updated
by incorporating the membership value of the observa-
tion, as shown in Equation 12. Second, if the subse-

Time

Figure 3: The analysis of FEMM state membership val-
ues, where a single observation can belong to multiple
states, is represented by a downward-sloping line

quent observation belongs to the next super state, the
duration model for the current state is considered, and
the value is updated using the next membership value,
as described in Equation 13. These two scenarios are
depicted in Figure 2 using a stateful schema.

Occasionally, in fuzzy models, an observation may be-
long to two or more super states based on learned fuzzy
patterns. In such scenarios, all membership values of the
states are taken into account, and the duration is calcu-
lated up to the current state, as illustrated in Equation
14. Figure 3 demonstrates this condition.

V (s, k + 1, t+ 1) = V (s, k, t)× Ps

(
Ok+1

)
(12)

V (s+1, k+1, 1) = V (s, k, t)×Rs(t)×Ps+1

(
Ok+1

)
(13)

V (s+ 1, k + 1, 1) =V (s, k, t)× Ps

(
Ok+1

)
×Rs(t+ 1)× Ps+1

(
Ok+1

) (14)

By applying these equations, we can utilize the
FEMM in place of the HMM.

3.1 Fuzzy Experience based RL

To elucidate the concept of a ”superstate,” we can define
it as a subsequence of similar observations that adhere
to common patterns. Consider, for example, a car in a
Mountain Car environment. When the car initiates for-
ward movement, the actions and intensity of the agent
remain consistent, performing all necessary actions to
maximize forward progress. This general behavior can

285

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

Algorithm 1 Finding Dense Points (Change Points)

Require: window length w
Ensure: List of change points CP
1: density list = {}
2: for obs ∈ observations[w/2 : full length− w/2] do
3: min obs = min(observations[obs − w/2, obs +

w/2])
4: max obs = max(observations[obs − w/2, obs +

w/2])
5: density list.append((obs,max obs−min obs))
6: end for
7: for index, (obs, density) ∈ enumerate(density list)

do
8: if density ≤ min(density list[index −

w/2, index+ w/2]) then
9: CP.append(obs)

10: end if
11: end for
12: return CP

be characterized as moving to the right through multi-
ple steps. At certain positions, the agent changes direc-
tion upon approaching boundaries. At these boundary
lines, the car’s velocity decreases, prompting a change
in direction.

When observations are sampled at equal intervals,
there is an increased density of observations in specific
areas. In the Mountain Car scenario, the car’s veloc-
ity decreases each time it reaches either side, resulting
in changes in position. Consequently, uniformly sam-
pling the position leads to dense observations at these
boundary locations. We refer to these points as Change
Points (CP). To identify these points, we can slide a
window over time and monitor the difference between
the extrema of observations as a density metric. If the
density within the window is minimal, we designate the
point as a Change Point. The algorithm outlined in
Algorithm 1 defines this process.

Figure 4: Incorporating a Fuzzy Experience Transfer
Block into the RL loop introduces a model-agnostic sys-
tem that evaluates the agent’s experiences using exter-
nal rewards.

By employing superstates, we can evaluate mini tra-

Algorithm 2 Fuzzy Ex-RL

Require: τ ← Double-ended queue with the size of t
1: while Playing do
2: S ← Environment’s current state
3: A← π(S)
4: S′, R← Take Action A at state S
5: Store (S,A,R, S′) in τ
6: if length(τ) = t then
7: RFSPRτ

← FSPR(τ)× α
8: for (Si, Ai, Ri, S

′
i) ∈ reverse(τ) do

9: Rnew ← (RFSPR +Ri)λ
i

10: store (Si, Ai, Rnew, S
′
i)inBuffer

11: end for
12: end if
13: Agent learn with new rewards
14: end while

jectories using the FEMM. The algorithm is similar
to Ex-RL; however, the evaluation metric differs as it
uses the value of a membership function instead of log-
likelihood. Since all values fall within the range of zero
to one, normalization parameters are unnecessary. To
manage the numerical effects of FEMM, a control pa-
rameter is utilized.

Fuzzy-based algorithms use simple, human-driven
rules, which simplifies task conditions since human task
descriptions generally avoid intricate rules. For in-
stance, an autonomous vehicle, which involves high-
dimensional tasks, can employ fuzzy-based algorithms
for maintaining lane balance as a high-level task. In
the context of FEMM, calculations mainly depend on
lookup tables, enhancing efficiency on hardware that
supports fuzzy logic. However, this method may en-
counter challenges when applied to hardware that is op-
timized for crisp logic.

4 Experiment and Results

To conduct the experiment, we employed specific hard-
ware and software configurations. The models were
developed using Python 3.10 on the Ubuntu 22.04.4
LTS operating system. Evaluations were carried out
on a system featuring 16 GB of RAM and an Intel
i7-9750H CPU. Each experiment involved running one
hundred agents, and the results were averaged across
these runs. All environmental variables were kept con-
stant to ensure a fair comparison between the Fuzzy
Ex-RL method and the Ex-RL method.

We utilized four environments to compare the meth-
ods: Mountain Car, Pendulum, Cart Pole, and Ball and
Beam. The first two environments, MC and PP, involve
tasks where the agents aim to escape from equilibrium,
while the latter two, CP and BB, focus on balancing an
object in an abstract setting. The Success Rate (SR)

286

Ghandi et.al. Fuzzy Experience-based RL Amirkabir University of Technology, December 18-19, 2024

quantifies the proportion of instances in which agents
successfully complete the given task across all experi-
ments. The Mean Episode (ME) indicates the average
number of episodes required for all agents to converge
on a solution. Additionally, the Execution Time per
Episode (Tep) measures the average duration an agent
takes to complete a single episode. The ”c” character
is added when changes based on a specific reference are
indicated.

Table 1: Performance of Fuzzy Ex-RL: success rate
and sample efficiency in four control environments using
three RL algorithms.

Environment Alg SR Sample Efficiency

CartPole
PPO 100% +23%

A2C 65% +12%

Q-learning 100% +63%

Pendulum
PPO 64% +11%

A2C 57% +18%

Q-learning 100% +37%

Ball & Beam
PPO 72% +35%

A2C 69% +16%

Q-learning 100% +84%

MountainCar
PPO 45% +16%

A2C 42% +21%

Q-learning 60% +87%

In Table 1, the proposed method is applied to three
different RL algorithms. Fuzzy Ex-RL, like Ex-RL, is
model-agnostic. The method is adaptable to any RL
agent, including advanced versions of vanilla algorithms,
because it critiques agent behavior based on experiential
data rather than requiring complex modifications. The
success rate (SR) and sample efficiency of these meth-
ods are compared to scenarios where pure RL is used
without any experience guidance. Sample efficiency is
defined as the number of episodes required by the agent
to achieve the learning goal. Therefore, an increase
in sample efficiency indicates that fewer episodes are
needed.The sample efficiency of the proposed method is
compared to that of the standard RL algorithm, in sce-
narios where the tasks are solvable by both approaches.

Table 2 compares Fuzzy Ex-RL with Ex-RL. Fuzzy
Ex-RL, by understanding the elasticity in patterns, can
map even extreme experiences that have differences in
the skewness of patterns. Consider a scenario involving
a mountain car with a steep slope that seeks to benefit
from an experience involving a similar but much gentler
slope. In the gentler scenario, the agent spends more
time climbing the hill with lower forces. If an HMM had

only encountered this gentler scenario, it would consis-
tently penalize a new agent for spending less time on
the right part of the hill. However, the new agent re-
quires more force over a shorter distance to manage the
steep slope. Although both patterns indicate forward
movement, the difference in elasticity leads to faults in
the learning process.

Table 2: Comparison of Fuzzy Ex-RL and Standard Ex-
RL Performance

Environment Alg SRc MEc Tepc

CartPole
PPO 0% +16% +7%

A2C +7% +14% +8%

Q-learning 0% +17% +11%

Pendulum
PPO +7% +12% +10%

A2C +9% +11% +9%

Q-learning +14% +16% +13%

Ball & Beam
PPO +9% +4% +5%

A2C +8% +5% +5%

Q-learning 0% +11% +10%

MountainCar
PPO +17% +16% +12%

A2C +22% +17% +11%

Q-learning +27% +19% +13%

The primary objective of leveraging experience in the
learning process is to facilitate transfer learning. Table
3 illustrates two scenarios: transferring experience from
the Mountain Car to the Pendulum, and from the Cart
Pole to the Ball and Beam. The changes in results are
calculated in comparison to Ex-RL. To address the issue
of Ex-RL, consider the first scenario. Both agents in the
Mountain Car and Pendulum tasks attempt to escape
from equilibrium by employing forward and backward
movement patterns. When plotting the positions of the
agents, both exhibit bowl-shaped movement patterns
to achieve their goals. Consequently, the abstract be-
havior should be transferable. However, the Mountain
Car agent requires approximately 180 steps to reach the
goal due to its physical parameters, whereas the Pen-
dulum agent needs only around 70 episodes. Although
the movement patterns are similar, the elasticity within
these patterns presents a challenge. The HMM statisti-
cally learns the pattern without regard to the duration
of the patterns, whereas Fuzzy Ex-RL effectively ad-
dresses this issue.

Based on the analysis of these three groups of results,
it appears that substituting the HMM with an elastic
pattern recognition model may be advantageous. In this
study, we employ the FEMM due to its mathematical
simplicity and its similarity to HMM. Both FEMM and

287

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

HMM offer significant benefits compared to traditional
reward shaping or learning from demonstration meth-
ods.

Table 3: Performance outcomes of transferring experi-
ence from Mountain Car to Pendulum and from Cart-
Pole to Ball and Beam, compared to standard Ex-RL.

Env Alg SR SRc MEc

Pendulum
PPO 53% +32% +6%

A2C 49% +36% +2%

Q-learning 100% 0% +9%

Ball & Beam
PPO 63% +26% +3%

A2C 59% +31% +1%

Q-learning 100% 0% +8%

5 Conclusion

This study aims to enhance transfer learning within RL
algorithms. Previously, the Ex-RL algorithm demon-
strated certain advantages over methods such as pure
reward shaping and learning with demonstration, pri-
marily due to its model-agnostic nature and its ability
to function without requiring the MDPs to be identical.
However, this research seeks to address a significant lim-
itation within the Ex-RL algorithm to improve learning
efficiency and transfer learning capabilities by incorpo-
rating fuzzy models.

The primary issue identified was the algorithm’s in-
ability to account for elasticity in patterns, which led to
failures in certain scenarios. Our findings revealed an
approximately 60% increase in success rate and a 20%
improvement in sample efficiency. Furthermore, in the
context of transfer learning, the Fuzzy Ex-RL algorithm
outperformed the plain model by 25%.

All results and improvements are comprehensively de-
tailed in Tables 1 to 3. These findings underscore the
potential of integrating fuzzy models into RL algorithms
to enhance both learning efficiency and transfer learning
performance.

References

[1] Tim Brys et al. “Policy Transfer using Reward
Shaping.” In: AAMAS. 2015, pp. 181–188.

[2] Tim Brys et al. “Reinforcement learning from
demonstration through shaping”. In: Twenty-
fourth international joint conference on artificial
intelligence. 2015.

[3] Jessica Chemali and Alessandro Lazaric. “Direct
policy iteration with demonstrations”. In: IJCAI-
24th International Joint Conference on Artificial
Intelligence. 2015.

[4] Sam Michael Devlin and Daniel Kudenko. “Dy-
namic potential-based reward shaping”. In: 11th
International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2012). IFAA-
MAS. 2012, pp. 433–440.

[5] M Sami Fadali. “Hidden Markov Models”. In: In-
troduction to Random Signals, Estimation The-
ory, and Kalman Filtering. Springer, 2024,
pp. 399–423.

[6] Ali Ghandi, Saeed Bagheri Shouraki, and Mahyar
Riazati. “Deep ExRL: Experience-Driven Deep
Reinforcement Learning in Control Problems”. In:
2024 12th Iran Workshop on Communication and
Information Theory (IWCIT). IEEE. 2024, pp. 1–
6.

[7] Ali Ghandi et al. “Ex-RL: Experience-Based Re-
inforcement Learning”. In: Information Sciences
(2024), p. 121479.

[8] Anna Harutyunyan et al. “Expressing arbitrary
reward functions as potential-based advice”. In:
Proceedings of the AAAI conference on artificial
intelligence. Vol. 29. 1. 2015.

[9] Mingxuan Jing et al. “Reinforcement learning
from imperfect demonstrations under soft expert
guidance”. In: Proceedings of the AAAI confer-
ence on artificial intelligence. Vol. 34. 04. 2020,
pp. 5109–5116.

[10] Bingyi Kang, Zequn Jie, and Jiashi Feng. “Pol-
icy optimization with demonstrations”. In: Inter-
national conference on machine learning. PMLR.
2018, pp. 2469–2478.

[11] Ezgi Korkmaz. “A Survey Analyzing Generaliza-
tion in Deep Reinforcement Learning”. In: arXiv
preprint arXiv:2401.02349 (2024).

[12] B Manjunatha et al. “Theoretical Foundations
and Application of Hidden Markov Models”. In:
Journal of Scientific Research and Reports 30.8
(2024), pp. 837–849.

[13] Ashvin Nair et al. “Overcoming exploration in
reinforcement learning with demonstrations”. In:
2018 IEEE international conference on robotics
and automation (ICRA). IEEE. 2018, pp. 6292–
6299.

[14] Andrew Y Ng, Daishi Harada, and Stuart Russell.
“Policy invariance under reward transformations:
Theory and application to reward shaping”. In: 99
(1999), pp. 278–287.

288

Ghandi et.al. Fuzzy Experience-based RL Amirkabir University of Technology, December 18-19, 2024

[15] Tom Schaul. “Prioritized Experience Replay”. In:
arXiv preprint arXiv:1511.05952 (2015).

[16] Sina Shahmoradi and Saeed Bagheri Shouraki.
“Evaluation of a novel fuzzy sequential pattern
recognition tool (fuzzy elastic matching machine)
and its applications in speech and handwrit-
ing recognition”. In: Applied Soft Computing 62
(2018), pp. 315–327.

[17] Gleice Kelly Barbosa Souza et al. “Transfer rein-
forcement learning for combinatorial optimization
problems”. In: Algorithms 17.2 (2024), p. 87.

[18] Richard S. Sutton and Andrew G. Barto. Re-
inforcement Learning: An Introduction. Cam-
bridge, MA, USA: A Bradford Book, 2018. isbn:
0262039249.

[19] Mel Vecerik et al. “Leveraging demonstrations
for deep reinforcement learning on robotics prob-
lems with sparse rewards”. In: arXiv preprint
arXiv:1707.08817 (2017).

[20] Eric Wiewiora, Garrison W Cottrell, and Charles
Elkan. “Principled methods for advising rein-
forcement learning agents”. In: Proceedings of the
20th international conference on machine learning
(ICML-03). 2003, pp. 792–799.

[21] Zhuangdi Zhu et al. “Learning sparse rewarded
tasks from sub-optimal demonstrations”. In:
arXiv preprint arXiv:2004.00530 (2020).

[22] Zhuangdi Zhu et al. “Transfer learning in deep re-
inforcement learning: A survey”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence (2023).

289

290

	Session 3B
	Fuzzy Ex-RL: Fuzzy Experience-Based Reinforcement Learning (Ali Ghandi, Saeed Bagheri Shouraki)

