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Abstract

Malignant melanoma is a type of skin cancer, which has
a very high fatality rate if not diagnosed and treated in
its early stages. This has created an incentive for the
design of systems for its automated diagnosis, using der-
moscopic images of skin lesions. One of the steps in such
systems would be the segmentation of the dermoscopic
image, so that the lesion is separated from the healthy
skin tissue surrounding it. In the recent years, with the
prolific usage and research on neural networks and deep
learning methods, many new deep-learning-based meth-
ods have emerged that aim to improve the performance
and the validity of automatically generated segmenta-
tion masks. This work explores the possible areas of
improvement upon earlier methods, such as the Dual
Aggregate Transformer method and analysis in polar
space, by using spatial encodings and novel loss func-
tions. Furthermore, the discrepancies between the re-
sults in polar and cartesian spaces are examined. It is
shown in this work that the dice score for the generated
segmentation mask can increase by 0.0059 points by us-
ing polar coordinates, and by a further 0.0017 points
by using the mixed loss function. Furthermore, we can
see an increase of 0.0152 points by comparing the re-
sults with what the previous studies have achieved in
the polar space.

Keywords: Medical Image Segmentation, Deep Learn-
ing, Neural Networks

1 Introduction

Melanoma, also known as malignant melanoma, is a
type of skin cancer caused by the out-of-control growth
and multiplication of the melanocyte cells that are re-
sponsible for the pigmentation of the skin. Such abnor-
mal growth causes lesions to appear on the skin, which
will first grow on the two upper layers of the skin. Since
the tumor, at this stage, has not yet reached any blood
vessels, the possibility of metastasis is very low, and the
tumor can be removed with a surgery.[2]

In the recent years, this has created an incentive for
researchers in the fields of image processing and ma-
chine learning for the development of methods which
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are able to detect the skin lesions caused by melanoma
automatically, providing a method for alerting potential
patients to possible melanoma tumors.[3]

While the conventional diagnosis of melanoma relies
on a variety of visual and physical features [4, 5], not
all of these features can be used by a computer model
that decides the risk of melanoma based on a stationary
image, therefore making the system less reliable than a
trained healthcare worker, but still useful as an early
alert mechanism, which can be used to reduce the cap-
ital and human cost of diagnosing melanoma.

The first step in most of these automated methods
for the detection of melanoma is creating a segmenta-
tion mask, which separates the lesion tissue from the
surrounding skin. As the shape and color of a lesion
are important clues in its classification, a segmentation
mask can be used as a clue to its shape and relative
pigmentation compared to the surrounding skin tissue
[6].

With the recent advances in the field of deep learning,
a number of new methods have been introduced which
utilize deep neural networks for the segmentation of der-
moscopic images. In this work, the Dual Aggregate
Transformer (DuAT) architecture [7] is used in com-
bination with the method used by Bencevic et al. [1] to
examine the possible improvements in its performance
by analyzing the images in polar space. While the anal-
ysis in polar space is shown to greatly increase the dice
score in the work by Bencevic et al. [1], the relation be-
tween the changes of dice score in the polar and carte-
sian spaces is explored in this work in more detail. Hav-
ing examined these methods, the effects of adding spa-
tial encodings to the feature maps is explored, alongside
a number of loss functions, which cause improvements
in the network’s performance. Finally, a segmentation
method is designed that shows higher performance than
the previously proposed methods.

2 Previous Work

As stated above, many deep-learning-based methods are
proposed for the segmentation of dermoscopic images,
which mostly rely on a U-Net [8] encoder-decoder struc-
ture. A great number of improvements have been made
on the original U-Net structure, such as the usage of
vision-transformer-based encoders and decoders [7, 9],
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which are shown to have superior performance com-
pared to classical convolutional neural networks in this
application. Another method of improving upon the
conventional U-Net design, is by transforming images
into polar coordinates, which is shown to greatly in-
crease the dice score of segmentation masks generated
for biomedical images, namely dermoscopic images that
are the focus of this work. [1]

2.1 U-Net-Based Architectures for Image Segmen-
tation

The U-Net architecture, is a class of neural networks
which are widely used for image segmentation. [8] The
general structure of these networks consists of an en-
coder and a decoder part. In the encoder, a feature
map is extracted from the image in each level, and the
dimensions of the image are decreased. The decoder
uses up-convolution layers to extract more high-level
features and combines them with low-level features from
the encoder via concatenation.

The multitude of U-Net architectures used for seg-
mentation utilize a variety of encoders and decoders,
such as the ResNet backbone [10], which can improve
the process of feature extraction.

2.2 Polar Image Transformation in Biomedical Seg-
mentation

While dermoscopic images are captured in a Cartesian
coordinate system, it is possible to transform such im-
ages to other coordinate systems, including the polar
coordinate system. In [1] it is shown that doing so in the
pre-processing step can significantly improve the perfor-
mance of the network.

This method begins by finding the mass center of the
skin lesion, which is then used as the origin of the polar
coordinate system. The image is then transformed into
a polar representation of itself, where the i and j axes
represent the radius and the angle of each pixel relative
to the mass center.

This transform is shown to cause improvements in
accuracy, dice score, and IoU (intersect over union) of
several U-Net-based convolutional neural networks, in-
cluding Res-U-Net++ and DeepLabV3+.

This approach creates the secondary problem of de-
tecting the position of the mass center without having
the ground truth mask. In [1], multiple approaches to
this problem are evaluated, such as using a separate
cartesian network to estimate the mass center, and using
a stacked hourglass network [11] to create a mass center
heatmap. The stacked hourglass approach achieved the
best results in [1], and is used in this work to estimate
the mass center of lesions.

2.3 Dual Aggregate Transformer Architecture

The basis for the neural network architecture used in
this work is the DuAT (Dual Aggregate Transformer)
architecture proposed by Tang et al. [7], which uses a
transformer-based architecture for both the encoder and
the decoder blocks of the network. Transformers have
been the preferred architecture in language-processing
and other 1-D sequence processing applications in the
recent years [12], as well as a multitude of applications
related to image processing, computer vision, and image
generation [13].

The DuAT architecture uses the PVT (Pyramid Vi-
sion Transformer) architecture as its backbone, which
contains no convolutional layers [9]. The PVT archi-
tecture operates by extracting patches from the image,
which are then mixed with positional embeddings, and
finally fed into a transformer encoder, which uses the
patch data to generate a multi-channel output, similar
to that of a convolutional neural network.

To decode the extracted features and generate the
segmentation mask, the DuAT architecture uses several
GLSA (Global Local Spatial Attention) blocks, and an
SBA (Selective Boundary Aggregation) block. These
GLSA blocks work by splitting the input features into
two local and global categories, which are processed dif-
ferently, and then mixed together. The SBA block mixes
the local and global features with a calibration mecha-
nism.

This architecture has shown a vast improvement
over the previously proposed segmentation models, and
therefore, it serves as the foundation of the neural net-
work architecture used in this work.

2.4 Combined Loss Function

Another feature of the previously mentioned DuAT ar-
chitecture is its use of a combined loss function, which
uses a weighted sum the binary cross-entropy and the
IoU loss of the output during the training phase. The
weights assigned to each pixel are calculated according
to their difference with their neighboring area. The use
of combined loss functions has been shown to improve
the performance and the convergence speed of the net-
work in previous works [14, 15].

3 Method

The proposed method builds on top of the previously
mentioned methods by utilizing both the polar trans-
form and the DuAT model, while making several other
changes in the form of spatial encoding, and post-
processing steps.
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3.1 The Segmentation Process

3.1.1 Pre-processing

The pre-processing step consists of reading the image
and resizing it into a 256 × 256 image. Firstly, an es-
timate of the mass center is made by feeding the im-
age to a previously trained stacked hourglass network.
The polar transform is then applied to the image using
the center as the origin point. The radius dimension is
scaled so that the resulting polar image would fit in the
same 256× 256 dimensions.

3.1.2 Encoder

The polar image is then fed to a PVT backbone, which
extracts 4 feature maps in 4 successively decreasing di-
mensions. This encoder is trained alongside the decoder
of the network.

3.1.3 Spatial Encoding

A point of difference between the used architecture and
the original DuAT architecture is that the extracted fea-
tures are adjusted using a spatial encoder, which calcu-
lates a certain vector for every pixel, according to its
radius value, and then adds it to the feature vector ex-
tracted by the encoder.

The positional encodings were implemented by two
different methods, each of which were trained and im-
plemented differently.

The first method was by using per-radius positional
encodings, meaning that each pixel in the image would
have an embedding vector added to its feature vector.
The optimal values of the positional embedding vector
are found during the training phase.

An alternative to this method is using polynomial
functions to approximate positional encodings for each
of the features in the feature vector. An n-th order poly-
nomial encoding is shown in (1), where r is the distance
of the point from the origin, a is the polynomial coeffi-
cient, and p vectors are the trainable parameters of the
function.

a⃗(r) =
n∑

i=0

rip⃗i (1)

While this approach simplifies the positional encod-
ing vector, by doing so, it might make the model easier
to train, and reduce the issue of overfitting. The sec-
ond model was trained with a 5-th order polynomial
positional embedding.

3.1.4 Decoder

The features extracted by the encoder are then fed to
the DuAT decoder, which uses deep-supervision to gen-
erate two feature maps from the aforementioned fea-

tures. The loss function is the sum of losses for both of
the outputs, but the reported dice scores are calculated
using only the final output.

3.1.5 Post-Processing

In the post-processing step, an erosion operation is first
applied to the segmentation mask, to detach the remote
parts of the segmentation mask. Then, the leftmost
connected object, i.e. the object on the center of the
mask, is selected, and all other objects are removed.
Finally, a dilation operation is applied to the mask to
undo the erosion that was applied earlier.

After the removal of the disconnected parts, the image
is transformed from polar coordinates back to Cartesian
coordinates. This is necessary for the calculation of the
dice scores, since the polar coordinate system tends to
increase the pixel density in the regions close to the
origin, which generally results in a higher-than-usual
dice score in this scenario.

In the last step, a closing operation is applied to the
Cartesian segmentation map to close any gaps inside of
it, and the result is compared with the ground-truth
mask provided in the dataset.

3.2 Loss Functions

Three different loss functions were used in this work.
Firstly, the combined loss function used by the DuAT
model. This loss function, as implemented by the DuAT
model, is shown to increase the performance of segmen-
tation models.

Secondly, the focal loss function [16] is used, with the
weighing factor of each pixel being equal to the abso-
lute value of error. For a segmentation output h and a
ground truth value y, the focal loss with a γ parameter
of 1 can be calculated as seen in (2).

Lfocal(h, y) = −|h− y|(y log(1− y) + (1− y) log y) (2)

Finally, mixed loss, an alteration of the combined
loss function is used, which multiplies the combined loss
function by the weighing factor used above, as can be
seen in (3).

Lmixed(h, y) = |h− y|Lcombined(h, y) (3)

3.3 Configurations

Four different models were tested, firstly the original
DuAT model, secondly the DuAT model trained on po-
lar space images, thirdly the DuAT model with posi-
tional embeddings, and finally the DuAT model with
polynomial embeddings. Each of these models were
trained and evaluated with the 3 different loss functions
mentioned above, and the average results of the runs
were reported.
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Figure 1: Block diagram of the proposed method. Note the difference in the output used for training the network
and the one used as the overall segmentation mask generated by the model.

4 results

The neural network model was trained for 30 epochs on
a GTX1050-Ti GPU with 4 GB of VRAM. The Adam
optimizer was used with a batch size of 4, learning rate
of , and an l2 regularization constant of . The ISIC-
2018 dataset was used, which provided 2594 sample im-
ages of varying resolutions, paired with their ground
truth segmentation masks. These images were resized
to 256×256 pixels during the training and evaluation
phases. While reporting the results on the test set, how-
ever, the output of the neural network were resized to
512×384 pixels and compared to the ground truth mask,
in order to match the resolution used by [7]. The weights
of the mass center detection network trained by Bence-
vic et al. were published online, and as such, they were
used for the Stacked Hourglass model which estimated
the mass center of the image, in order to transform it
into polar space. [17]

In the beginning of each training run, the dataset
was randomly separated into training, validation, and
test subsets, each consisting of 80, 10, and 10 percent
of the original set respectively. The model was then
trained for 30 epochs on the training set, and evaluated
on the validation set in the end of each epoch. The
best-performing model on the validation set was chosen

as the optimal output of its respective training run.

In the end of each run, the optimal model of that
run was evaluated on the test dataset, and the resulting
dice score reported. Each configuration of the model
was evaluated for 5 runs, and the average results were
reported.

For models that used polar coordinates, dice scores
were measured on both the polar ground truth (similar
to the method used by [1]) and the original cartesian
ground truth.

4.1 Usage of Polar Coordinates

By comparing the results between the cartesian and po-
lar models, it can be seen that the usage of polar co-
ordinates has a positive effect on the model’s perfor-
mance, as seen in Table 1. However, by comparing the
cartesian-space dice scores with polar-space dice scores
in Table 2, we observe that evaluating the dice score in
polar space causes a large increase in dice score, which
is not necessarily retained after the mask is transformed
back into cartesian coordinates. This is especially evi-
dent for the model trained with polynomial encodings
and mixed loss function, which is revealed to perform
worse than the cartesian network after its generated
masks are transformed into cartesian space.
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Composite
loss mean
DSC

Focal loss
mean
DSC

Mixed
loss mean
DSC

Cartesian
DuAT

0.8799 ±
0.0008

0.8777 ±
0.0005

0.8798 ±
0.0010

Polar
DuAT

0.8858 ±
0.0004

0.8834 ±
0.0022

0.8875 ±
0.0009

Polar
DuAT +
Spatial
Embedding

0.8858 ±
0.0015

0.8772 ±
0.0040

0.8802 ±
0.0012

Polar
DuAT +
Polynomial
Embedding

0.8789 ±
0.0013

0.8739 ±
0.0031

0.8792 ±
0.0016

Table 1: Mean dice scores in cartesian space for every
tested configuration

4.2 Positional Encoding

When the models are trained with the combined loss
function, a noticeable improvement can be seen in the
polar coordinate dice scores, as seen in Table 2. This
trend is however reversed when examining the models
with focal and mixed loss functions. In these models,
adding positional encodings seems to have an adverse
effect on the resulting dice score.

Additionally, by examining the dice scores shown in
Table 1, we can observe that the previously observed in-
creasing trend is not observed in cartesian space. On the
contrary, a general decrease is seen in most of the mod-
els’ performances. This shows that spatial embeddings
implemented in this form fail to improve the models’
performance in a meaningful way.

We can also infer from this observation that improve-
ments in polar coordinate metrics do not necessarily cor-
relate with improvements in cartesian space, and it is
necessary to make comparisons in the cartesian space,
if one is to determine if a certain change in the model
has positive or negative effects.

4.3 Loss Functions

By examining the cartesian dice scores (Table 1), it can
be seen that the focal loss function fails to improve the
results achieved by the composite loss function in every
configuration.

The mixed loss function, however, in the polar-trained
model, and the model using polynomial spatial encod-
ings, manages to increase the resulting dice score, giv-
ing the best result when paired with the polar-trained
model without spatial encoding.

Composite
loss mean
DSC

Focal loss
mean
DSC

Mixed
loss mean
DSC

Polar
DuAT

0.9304 ±
0.0002

0.9380 ±
0.0013

0.9405 ±
0.0004

Polar
DuAT +
Spatial
Embedding

0.9391 ±
0.0009

0.9334 ±
0.0040

0.9358 ±
0.0008

Polar
DuAT +
Polynomial
Embedding

0.9352 ±
0.0009

0.9320 ±
0.0020

0.9351 ±
0.0011

Table 2: Mean dice scores in polar space for polar-
trained networks

Figure 2: Images from the dataset, alongside the pro-
vided ground truth mask and the generated segmenta-
tion output

4.4 Computational Complexity and Parameters

The PVT backbone itself, has a lower number of pa-
rameters compared to the conventional convolutional
backbones such as ResNet, as it can be seen in Table
3. While the addition of the spatial embeddings in-
creases the number of parameters, this increase is neg-
ligible compared to the total number of parameters.

Similarly, the training and inference time for all mod-
els is within the same range, with the PVT models per-
forming slightly better than the ResNet model. The
extra processing necessary for transforming the image
between the polar and cartesian spaces increases the
training and inference times slightly for the polar mod-
els, but this increase remains negligible compared to the
base value. The evaluation time was evaluated on the
CPU as well, which while slower than the GPU, still can
output an image within less than half a second.
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Nparameters Ttraining Tevaluation

DuAT
(ResNet
Backbone)

27.69M 418ms 220ms

DuAT 25.07M 406ms 197ms
DuAT
(Cartesian
Space)

- 405ms 212ms

DuAT
(CPU)

- - 370ms

DuAT +
Spatial Em-
beddings

25.43M 415ms 212ms

DuAT +
Polynomial
Embed-
dings

25.36M 418ms 204ms

Table 3: A summary of the number of parameters and
mean per-image training and evaluation time on one
epoch

5 Conclusion

It can be concluded from the aforementioned results,
that when training in polar spaces, positional encod-
ings are unlikely to improve the results. While improve-
ments are seen when examining the results in polar co-
ordinates, these improvements are made by biasing the
results towards the pixels whose importances are more
emphasized by the polar coordinates, as the area close
to the origin is more densely sampled in a cartesian-to-
polar transform.

Similarly, the large gap seen between the dice scores
of polar and cartesian spaces suggests that evaluation
in polar coordinates can be misleading in many cases,
and does not accurately describe improvement or dete-
rioration in a method’s performance.

The improvement seen by the usage of mixed loss
function, that is consistent in both polar and cartesian
spaces, suggests that this loss function can be more ef-
fective in training segmentation models than the com-
posite loss used by [7], and as such, its performance in
other similar tasks might be worth examination.

The final proposed method of this work, consists of a
DuAT neural network, which is trained on polar-space
images, uses a mixed loss function, and applies the post-
processing steps described in the method section on its
output. A comparison with the polar and cartesian-
space methods can be seen in Table 4. While the results
provided by [1] were evaluated in polar space, a very
significant improvement can still be seen by compar-
ing their provided metrics with that of the DuAT-based
models.

Dice score mIoU
UNet 0.9234 0.8699
ResUNet++ 0.9253 0.8743
DeepLabV3+ 0.9235 0.8721
Our Method 0.9405 0.8874

Table 4: Comparison of polar-space metrics among our
proposed method and methods investigated by [1]
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