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Abstract

Non-negative matrix factorization (NMF) and self-
representation are widely employed for dimensionality
reduction and extracting intrinsic structures from high-
dimensional data. However, integrating these tech-
niques for effective unsupervised feature selection re-
mains a complex challenge. In this article, we pro-
pose a novel method, Self-Representation Feature Se-
lection based on Non-Negative Matrix Factorization
(SRFSNMF), which bridges this gap. SRFSNMF uses
the Gram matrix, built from the basis matrix of sam-
ples obtained through NMF, combined with a self-
representation technique. This aims to capture the
structural relationships between samples and uncover
intrinsic data relationships, enhancing the selection of
relevant features in complex datasets. To solve the
SRFSNMF model, we develop an efficient iterative
optimization algorithm with guaranteed convergence.
Experimental results on multiple benchmark datasets
demonstrate that SRFSNMF outperforms state-of-the-
art methods, achieving superior effectiveness in unsu-
pervised feature selection tasks. Additionally, we con-
duct a sensitivity analysis of the model’s parameters and
assess its robustness against noise, further validating the
reliability and stability of our approach.

Keywords: Self-Representation, Non-negative Matrix
Factorization, and Feature Selection

1 Introduction

In modern data science, the rapid increase in dimen-
sionality poses significant challenges for traditional clus-
tering and classification techniques [1]. Identifying
meaningful patterns in high-dimensional data, espe-
cially in unsupervised settings, requires methods that
can efficiently reduce dimensionality while preserving
the underlying structure of the data [2]. Two such
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prominent approaches are self-representation and Non-
negative Matrix Factorization (NMF) [3].

Self-representation leverages the inherent relation-
ships within a dataset by expressing each feature as
a linear combination of other features, capturing the
datas internal structure and dependencies [4]. This ap-
proach has proven highly effective in unsupervised fea-
ture selection, particularly in cases where labeled data
is unavailable [5]. By analyzing intrinsic characteris-
tics, self-representation helps mitigate the curse of di-
mensionality, facilitating more effective clustering and
classification tasks [6].

On the other hand, NMF has emerged as a power-
ful tool for dimensionality reduction and data segmen-
tation [7]. By decomposing a non-negative data ma-
trix into two lower-dimensional, non-negative matrices,
NMF generates a parts-based representation of the data,
making it highly effective for clustering [8]. However,
one of the main limitations of NMF is its reliance on
linear separability, which can lead to poor performance
in datasets characterized by non-linear relationships.

In this work, we propose a novel approach that lever-
ages the structural insights gained from NMF and com-
bines them with a self-representation technique to en-
hance feature selection. Specifically, our method fo-
cuses on uncovering intrinsic relationships within high-
dimensional data by modeling the interactions between
data samples. By deriving the inner product of the
learned sample representations, we can capture pairwise
similarities, allowing us to understand the underlying
structure of the data more effectively. This not only
helps reduce dimensionality but also enhances the se-
lection of the most informative features, particularly in
complex datasets.

However, integrating NMF with self-representation
for effective unsupervised feature selection remains a
complex challenge. In this article, we propose a novel
method, Self-Representation Feature Selection based on
Non-Negative Matrix Factorization (SRFSNMF). Our
approach employs a Gram matrix constructed from
the basis matrix of samples obtained through NMF,
combined with a self-representation technique. This
methodology aims to capture the structural relation-
ships between samples and uncover intrinsic data re-
lationships, thereby enhancing the selection of relevant
features in complex datasets. By emphasizing the inter-
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actions among samples, SRFSNMF not only improves
the accuracy of feature selection but also facilitates the
identification of clusters and patterns within the data.
Through empirical evaluations on benchmark datasets,
we demonstrate that our proposed method significantly
outperforms existing feature selection and clustering
techniques.

In the following sections, we will provide a compre-
hensive overview of our research. Section 2 will cover
the preliminaries, offering insights into NMF and self-
representation techniques, as well as introducing our
proposed method with a detailed formulation. Section 3
will explain the optimization processes and algorithms
employed in our model. Section 4 will present the nu-
merical results, demonstrating the performance and ef-
fectiveness of our method across various datasets and
experiments to analyze the model’s efficacy. Finally,
Section 5 will conclude the article, summarizing our
findings and highlighting the contributions and implica-
tions of our work in the context of unsupervised feature
selection.

2 Proposed Method

In recent years, self-representation and matrix factor-
ization have become key techniques for unsupervised
feature selection, particularly when dealing with high-
dimensional data. The challenge of high-dimensional
data is to efficiently select the most informative fea-
tures while maintaining the inherent structure of the
data. Traditional dimensionality reduction techniques
like NMF, offer robust methods for clustering and data
representation [9]. However, these methods often face
limitations in capturing complex data relationships,
which can hinder their performance in feature selection
tasks.

To address these issues, we propose an advanced
self-representation approach integrated with the NMF
framework. Our method combines the benefits of self-
representation capturing the intrinsic relationships be-
tween features and samples with the power of NMF for
clustering and feature selection. This novel approach
aims to improve performance in high dimensional set-
tings by simultaneously leveraging the structural rela-
tionships between features and samples.

In the following sections, we first outline the necessary
notations and preliminaries, including NMF and self-
representation. Then, we describe the details of our
proposed method, leading to the final objective function
that drives the optimization.

2.1 Preliminaries

2.1.1 Notation

Let X ∈ Rm×n represent the data matrix, where m is
the number of samples and n is the number of features.
The rows of X are denoted as [x1; x2; . . . ; xm], repre-
senting the samples, while the columns are denoted as
[f1, f2, . . . , fn], representing the features. For any ma-
trix X, the i-th row is represented as xi, the j-th col-
umn as fj , and the (i, j)-th element as xij . We denote
Rm×n

+ as the set of non-negative matrices in Rm×n. The
identity matrix in Rm×m is represented as I. The L2,1

norm of X, denoted ‖X‖2,1, is defined as the sum of
the Euclidean norms of its rows, while the Frobenius
norm ‖X‖F is the square root of the sum of the squared
elements of X.

2.1.2 Non-Negative Matrix Factorization

NMF is a popular method for dimensionality reduction,
where the goal is to decompose a non-negative data ma-
trix into two lower-dimensional non-negative matrices
that capture the underlying structure of the data [10].
Given a data matrix X ∈ Rm×n, where m is the number
of samples and n is the number of features, NMF seeks
to find two matrices V ∈ Rm×r and H ∈ Rn×r such
that:

X ≈ VHT .

Here, r is the reduced rank, typically much smaller than
n, which captures the intrinsic structure of the data.
The objective of NMF is to minimize the reconstruction
error between X and its approximation VHT , which is
formulated as:

min
V,H≥0

‖X−VHT ‖2F .

In this decomposition, V contains the basis vectors
for the columns (features) of X, while H represents the
basis for the rows (samples). Each column of H corre-
sponds to a latent feature in the reduced space, and the
matrix HHT plays an important role in capturing the
similarity between the samples. Specifically, the Gram
matrix HHT provides pairwise inner products between
the rows of H, which reveals the relationships between
different samples in the low-dimensional representation.

This similarity structure encoded in HHT helps to
identify clusters or groups of similar samples, making it
a powerful tool for understanding the underlying pat-
terns in the data. Moreover, the matrix HHT also fa-
cilitates noise reduction and improves the accuracy of
the approximation by focusing on the most significant
dependencies between samples.

2.1.3 Self Representation

In this subsection, we explain the concept of self-
representation in the context of feature selection. We
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assume that features in the dataset are not entirely in-
dependent, and each feature can be represented as a
linear combination of the other features. Specifically,
for a feature vector fi in the data matrix X, it can be
expressed as:

fi =
n∑

j=1

zjifj .

Here, zji is an element of the self-representation matrix
Z, where each element represents the weight coefficient
between the i-th feature fi and the j-th feature fj . This
formulation leverages the relationships between features
to highlight dependencies and redundancies.

For a clearer understanding, the self-representation
model for all features can be illustrated as follows:

f1 ≈ z11f1 + z21f2 + · · ·+ zn1fn

f2 ≈ z21f1 + z22f2 + · · ·+ zn2fn

...

fn ≈ zn1f1 + zn2f2 + · · ·+ znnfn

. (1)

This formulation given in (1) shows that each feature
is linearly reconstructed by the other features, reflect-
ing the importance of each feature in representing the
dataset. The i-th row of Z, denoted as zi, influences
the reconstruction of the corresponding feature fi. A
higher norm of zi indicates that feature fi plays a more
significant role in representing the dataset, thus signify-
ing its importance. To formalize this self-representation
model, we define the following objective function, which
aims to minimize the reconstruction error of the feature
representation:

min
Z≥0
‖X−XZ‖2F

This objective encourages a compact representation of
features by using the self-representation matrix Z to
reveal the underlying relationships between the features.

2.2 Objective Function

We propose a novel method that integrates NMF with
self-representation to enhance unsupervised feature se-
lection. NMF captures the structural patterns of high-
dimensional data, while self-representation identifies rel-
evant features by revealing dependencies between fea-
tures.

In our approach, the self-representation matrix Z ∈
Rn×n encodes the relationships between features, where
larger values in Z signify stronger dependencies. To
ensure a low-rank structure in this feature relationship,
we constrain Z as Z = HHT , where H ∈ Rn×r is a non-
negative matrix and r � n. This constraint ensures
a symmetric and low-rank Z, preserving the essential
dependencies between features.

Matrix H serves as a critical component that links
NMF and self-representation. In NMF, H represents
the latent space for samples, and the product HHT

forms a Gram matrix that encodes similarities between
samples in a low-dimensional space. The symmetry
of HHT guarantees mutual dependencies between fea-
tures, which is essential for capturing both sample and
feature relationships consistently. The objective func-
tion of our method is formulated as follows:

min
V,H≥0

‖X−VHT ‖2F + ‖X−XHHT ‖2F , (2)

where V ∈ Rm×r represents the basis matrix for fea-
tures, and H serves as the matrix that captures the
latent structure of both samples and features. The first
term minimizes the reconstruction error in the sam-
ple space using NMF, while the second term enforces
the self-representation constraint, ensuring that feature
dependencies are captured in a low-rank form through
HHT . In (2), it can be seen that both the feature space
(via VHT ) and the sample space (via HHT ) are si-
multaneously modeled, leading to a more compact and
interpretable feature selection process. The matrix H
plays a dual role: reducing dimensionality and uncov-
ering the most representative features while minimizing
redundancy.

2.2.1 Sparsity

Incorporating sparsity into the self-representation
framework enhances the ability to select the most rele-
vant features. To achieve this, we impose an L2,1-norm
regularization on the matrix H, which enforces row-wise
sparsity in the factorized representation Z = HHT . The
L2,1-norm encourages only a few rows of H to have non-
zero values, which effectively selects a subset of features
for better interpretability and improved feature selec-
tion.

Let H ∈ Rn×r, where each row hi corresponds to a
feature, and imposing sparsity ensures that only a small
number of these features significantly contribute to the
self-representation. The L2,1-norm of H is defined as:

‖H‖2,1 =

m∑
i=1

‖hi‖2,

where ‖hi‖2 is the L2-norm of the i-th row of H. This
term encourages sparsity by penalizing the sum of the
norms of the rows of H, ensuring that many of the
rows become zero, thereby reducing the number of con-
tributing features. These norms can also be expressed
in terms of matrix trace functions as:

‖H‖2,1 = trace(HTGH),

where G = [Gij ] ∈ Rm×m is a diagonal matrix with
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diagonal entries defined as:

Gii =
1

max(2‖hi‖2, ε)
, i = 1, 2, . . . ,m, (3)

where ε is a small constant to avoid division by zero.
The final objective function of our proposed method

incorporates both the NMF-based sample representa-
tion and the sparse symmetric self-representation for
features. It is formulated as follows:

min
V,H≥0

‖X−VHT ‖2F +‖X−XHHT ‖2F +α‖H‖2,1. (4)

By incorporating the sparsity constraint, our method
not only selects key features but also ensures that the
self-representation matrix Z = HHT is low-rank, sym-
metric, and interpretable. The inclusion of the L2,1-
norm allows the model to focus on the most informa-
tive features, improving the performance of unsuper-
vised tasks such as clustering and feature selection.

3 Optimization

To solve the above objective function, we propose
an iterative optimization approach. The problem is
non-convex due to the interaction between the self-
representation and sparsity terms, so we apply a
gradient-based algorithm to minimize the objective.

At each iteration t, the self-representation matrix Z
is updated by solving:

min
V,H≥0

‖X−VHT ‖2F +‖X−XHHT ‖2F +αtrace(HTGH).

The optimization continues until the matrix H con-
verges, meaning the change between iterations becomes
smaller than a predefined threshold. The final solution
provides the sparse self-representation matrix H, from
which the most informative and non-redundant features
can be selected. We define the function L as:

L = ‖X−VHT ‖2F + ‖X−XHHT‖2F + αtrace(HTGH)

+ trace(∆TH),

which can be expanded as:

L = trace(XTX)− 2trace(HTXTV) + trace(HTHVTV)

+ trace(XTX)− 2trace(HTXTXH)

+ trace(HTHHTXTXH) + α trace(HTGH)

+ trace(∆TH),

where ∆ is a Lagrange multiplier matrix enforcing the
non-negativity constraint on H. To find the optimal
H, we take the gradient of L and set it to zero. The
gradient is given by:

∂L

∂H
= −2XTV + 2HVTV − 4XTXH + HHTXTXH

+ XTXHHTH + 2αGH + ∆.

By considering the Kuhn-Tucker conditions
∆ijHij = 0, and assuming that the gradient is
zero, we update Hij as follows:

Hij ← Hij

√
Pij

Qij
, (5)

where

P = 2XTV + 4XTXH,

Q = 2HVTV + HHTXTXH + XTXHHTH + 2αGH.

With similar way, the update rule of V obtain by:

Vij ← Vij

√
(XH)ij

(VHTH)ij
. (6)

3.1 Algorithm

In this subsection, we introduce the iterative updating
algorithm designed for the proposed feature selection
method. The algorithm begins with the initialization of
key matrices, followed by iterative updates of the fea-
ture representation and selection matrices. Specifically,
it alternates between updating the feature matrix H,
optimizing the data representation matrix V, and ad-
justing the selection matrix G, which is initialized as
the identity matrix. The algorithm ensures convergence
by iterating until a predefined maximum number of iter-
ations is reached. In the final step, the algorithm iden-
tifies the most informative features by selecting those
with the highest L2-norm values from the rows of ma-
trix H, outputting a set of k selected features for further
analysis.

4 Numerical Results

In this section, we present the experimental evaluation
of the proposed SRFSNMF method. We assess its per-
formance across multiple datasets, comparing it to sev-
eral baseline methods to ensure a comprehensive analy-
sis. The experiments are designed to evaluate the clus-
tering performance, feature selection capabilities, and
robustness of SRFSNMF.

We first describe the datasets and baseline methods
used for comparison. Next, we outline the experimen-
tal setup, including parameter settings and evaluation
metrics. Finally, we provide a detailed analysis of the
results, highlighting the advantages of SRFSNMF in
terms of accuracy, feature selection, and resilience to
noise.

In our experiments, the assessment of clustering per-
formance involves the use of two widely-utilized evalu-
ation metrics [12]: clustering accuracy (ACC) and nor-
malized mutual information (NMI). Higher values for
both ACC and NMI indicate improved performance.
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Algorithm 1 Iterative updating algorithm for SRFS-

NMF.
Require:

X ∈ Rm×n: The data matrix with m data samples

and n features;

k: the number of selected features;

α: the positive parameters;

Iter max: the maximum number of iterations.

1: Initialize the matrix V ∈ Rm×r

2: Initialize the matrix H ∈ Rn×r.

3: Set the matrix G ∈ Rn×n as the identity matrix.

4: while iteration ≤ Iter max do

5: Update H by (5).

6: Fix H and update V by (6).

7: Update the matrix G based on the rule (3).

8: end while

9: Find the L2-norm for every row in the matrix H,

and arrange them in decreasing order. Then, choose

k features that correspond to the highest k norms

among the rows of H.

Ensure: Choose a set of k features as the output of the

proposed feature selection method.

Suppose that ci is the clustering label and qi represent
true label of data point xi. ACC is defined as follows:

ACC =

∑n
i=1 δ(qi,map(ci))

n
,

where n is the total number of data, δ(., .) is the delta
function defined by:

δ(x,y) =

{
1, if x = y,

0, otherwise

the function map(ci) represents the optimal mapping
that permutes clustering labels to align with the true
labels using the Kuhn-Munkres algorithm.

NMI is defined in the following manner:

NMI =
MI(C,C′)

max(H(C),H(C′))
,

where C and C′ are clustering labels and the truth la-
bels respectively. Furthermore, H(C) and H(C′) are
the entropies of C and C′, respectively. MI(C,C′) is
the information entropy between C and C′:

MI(C,C′) =
∑

ci∈C,c′
j∈C′

p(ci, c
′
j). log2

p(ci, c
′
j)

p(ci)p(c′j)
,

where p(ci) and p(c′j) denote the probabilities a sample
belongs to the clusters ci and c′j respectively. p(ci, c

′
j)

is the joint probability that a sample belongs to the
clusters ci and c′j simultaneously.

4.1 Datasets

In this study, we utilize a variety of datasets to evaluate
the performance of the proposed method. The datasets
span different domains, including face image data and
biological data, providing a comprehensive evaluation of
the method’s applicability.

Table 1: An overview of the datasets utilized in this
study, in which m refers to the number of data samples,
n refers to the number of features, and c is the number
of distinct classes.

ID Dataset m n c Type of Data
1 ORL 400 1024 40 Face Image Data
2 Jaffe 213 676 10 Face Image Data
3 Orlraws10P 100 10304 10 Face Image Data
4 Yale 165 1024 15 Face Image Data
5 Prostate GE 102 5966 2 Biological Data

The datasets used in this study are detailed as follows:

• ORL: This dataset consists of face images from 40
distinct individuals, with 10 different images per
individual. Each image is resized to 32× 32 pixels,
resulting in 1024 features per image.

• Jaffe: The Jaffe dataset contains images of 10 dif-
ferent Japanese female subjects posing with differ-
ent facial expressions. Each image has 676 features.

• Orlraws10P: This dataset comprises raw face im-
ages with 10304 features each, collected from 10
individuals with 10 images per person.

• Yale: The Yale face database includes 165
grayscale images of 15 individuals, with each image
resized to 32× 32 pixels, resulting in 1024 features
per image.

• Prostate GE: This dataset contains gene expres-
sion data from 102 prostate samples, with 5966 fea-
tures each. The samples are categorized into two
classes: tumor and normal.

The diversity of these datasets, covering both image
and biological data, ensures that our method is robust
and versatile across different types of data and applica-
tions.

4.2 Comparison methods

The effectiveness of our proposed method is evaluated
by comparing it with several established unsupervised
feature selection techniques. The following methods are
included in our comparative analysis:
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1. Baseline: This method uses all original features
without any selection.

2. LS [11]: Selects features based on their variance
while preserving local data structure using Lapla-
cian score.

3. MCFS [12]: Selects an optimal subspace of
features to best preserve multi-cluster structures
within the data.

4. RSR [13]: Utilizes self-representation to model
each feature as a linear combination of others, pro-
moting sparsity using L2,1-norm.

5. LS-CAE [14]: Proposes an unsupervised feature
selection approach using concrete layer mechanisms
and Laplacian score, optimizing feature selection
and reconstruction objectives.

6. CD-LSR [15]: Conducts feature selection based
on L2,0-norm using simple least square regression,
achieving efficient feature subset selection.

Each method offers distinct approaches to feature
selection, focusing on various aspects such as vari-
ance, structure preservation, and sparsity enforcement.
These comparative evaluations provide insights into the
effectiveness of our proposed method across different
datasets and scenarios.

4.3 Results and Analysis

The proposed method, SRFSNMF, is evaluated using
clustering accuracy (ACC) and normalized mutual in-
formation (NMI) across multiple datasets. Tables 2 and
3 summarize the results, highlighting the best perfor-
mance for each dataset in bold.

Table 2: ACC results for different datasets. Top-
performing results are highlighted in bold.

Algorithms Yale Jaffe Orlraws10P ORL Prostate GE
Baseline 38.79 87.17 72.15 51.70 57.84

LS 38.90 88.26 67.00 38.78 60.68
MCFS 38.63 90.77 76.95 49.82 56.86
RSR 40.00 85.91 68.00 46.50 61.74

LS-CAE 42.24 90.14 74.00 56.75 61.76
CD-LSR 38.97 90.14 78.70 49.46 63.72

SRFSNMF 42.43 92.49 81.00 58.01 62.73

The results in Tables 2 and 3 indicate that SRFS-
NMF consistently outperforms the baseline and other
comparative methods across most datasets in both ACC
and NMI metrics.

• The proposed SRFSNMF method consistently out-
performs the Baseline approach, highlighting that
feature selection can improve clustering perfor-
mance by reducing the impact of irrelevant and re-
dundant features.

Table 3: NMI results for different datasets. Top-
performing results are highlighted in bold.

Algorithms Yale Jaffe Orlraws10P ORL Prostate GE
Baseline 44.19 87.87 77.57 70.79 1.80

LS 43.51 90.11 73.27 61.58 4.51
MCFS 43.92 90.94 82.75 69.17 1.33
RSR 46.83 85.52 81.25 68.64 6.80

LS-CAE 48.32 91.10 80.35 74.99 7.54
CD-LSR 44.23 90.45 83.18 69.01 7.93

SRFSNMF 49.70 92.02 84.47 75.05 7.64

• SRFSNMF achieves higher accuracy and mutual in-
formation scores in most cases compared to other
methods. However, it shows relatively lower perfor-
mance on the Prostate GE dataset, which may be
attributed to the complexity of the biological data.

• With the exception of the Prostate GE dataset,
Figures 4 and 5 show that SRFSNMF surpasses
all other unsupervised feature selection methods
on the remaining datasets in terms of both ACC
and NMI, indicating its robustness and effective-
ness across diverse datasets.

Overall, the proposed SRFSNMF method demon-
strates consistently strong performance across various
datasets, indicating that it is an effective approach
for unsupervised feature selection and clustering. The
method effectively captures the inherent structure of the
data, leading to higher clustering accuracy and mean-
ingful clusters.

Figures 1 and 2 further illustrate the performance
of SRFSNMF, showing the variation of ACC and
NMI with different numbers of selected features across
datasets. These charts highlight the stability of SRFS-
NMF compared to other unsupervised feature selection
methods.

In conclusion, SRFSNMF proves to be a robust
method, consistently yielding high ACC and NMI across
diverse datasets, thus validating its effectiveness in un-
supervised feature selection and clustering tasks.

4.4 Parameter Sensitivity Analysis

In order to evaluate the effect of the regularization pa-
rameter α on the clustering performance of the pro-
posed method, a sensitivity analysis was conducted.
This analysis aims to assess how variations in α impact
the accuracy (ACC) and normalized mutual information
(NMI) across different datasets.

Figure 3 presents 3D plots that illustrate the
trends in ACC and NMI for the ORL, Jaffe, and
Yale datasets. In these plots, the x-axis rep-
resents the parameter values of α, ranging from
{10−8, 10−6, 10−4, 10−2, 102, 104, 106, 108}, while the y-
axis denotes the number of selected features, varying be-
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Figure 1: ACC of different methods on five datasets in
terms of different numbers of selected features.

Figure 2: NMI of different methods on five datasets in
terms of different numbers of selected features.

tween {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The z-axis
reflects the values of ACC and NMI.

From these plots, it is evident that the clustering per-
formance shows sensitivity to changes in the regulariza-
tion parameter. Specifically, for the ORL dataset, the
variations in ACC and NMI with respect to α are rela-
tively small across the different numbers of selected fea-
tures, suggesting that the proposed SRFSNMF model
is not highly sensitive to α within the tested range.

Figure 3: 3D plots showing the relationship between the
number of selected features, parameter values (α), and
ACC or NMI for the Jaffe, ORL, and Yale datasets. The
x-axis represents the parameter values, the y-axis shows
the number of selected features, and the z-axis indicates
ACC or NMI values.

4.5 Robustness Against Noise

To test the resilience of the proposed method against
different outlier intensities, three types of noise were in-
troduced: Salt-and-Pepper Noise, Gaussian Noise, and
Block Occlusion. These experiments simulate real-world
conditions where images are corrupted by noise or oc-
cluded, offering insights into the robustness of the pro-
posed method. The ORL dataset, containing facial im-
ages, was used for this evaluation.

Salt-and-Pepper Noise. This type of noise simu-
lates pixel-level corruption by randomly flipping a per-
centage of pixels to either black or white. The Salt-and-
Pepper noise density is varied as 0.05, 0.1, 0.15, and 0.2,
corresponding to 5%, 10%, 15%, and 20% of corrupted
pixels, respectively. As demonstrated in Figure 4, in-
creasing the level of Salt-and-Pepper noise introduces
progressively more random pixel disruptions, which af-
fect the clarity of the image. Despite the presence of
these noise artifacts, the proposed algorithm demon-
strated strong robustness in maintaining performance
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as the noise intensity increased.
Gaussian Noise. Gaussian noise was applied to fur-

ther challenge the method, with standard deviations (σ)
set to 0.5, 1, 1.5, and 2. This introduces random fluctu-
ations in pixel intensities across the entire image, sim-
ulating sensor noise or other types of uniform interfer-
ence. The effect of Gaussian noise increases with larger
σ values, resulting in noticeable degradation in image
quality. As shown in Figure 5, the images become in-
creasingly blurred as the noise intensity increases, but
the method was able to maintain its stability even in
the presence of heavy Gaussian noise.

Block Occlusion. In addition to pixel-level noise,
block occlusion was introduced to simulate missing parts
of the data. Square blocks of sizes 3 × 3, 4 × 4, 5 × 5,
and 6×6 were randomly placed on the images to mimic
occlusions. Larger block sizes led to more significant oc-
clusion of the facial features, as shown in Figure 6. This
experiment tested the models ability to handle partially
missing information, a common issue in image datasets
affected by occlusion or masking.

By applying these three types of noise and occlusion,
we were able to examine the algorithms resilience in
challenging, noisy environments. The results indicate
that the method remains robust even as noise intensity
and occlusion levels increase, highlighting its suitability
for real-world applications where data imperfections are
inevitable.

Figure 4: Results of the Salt & Pepper noise.

Figure 5: Results of the Gaussian noise.

Figure 6: Results of the Occluded

5 Conclusion

In this article, we introduced a novel method,
Self-Representation Feature Selection based on Non-
Negative Matrix Factorization (SRFSNMF), to address
the challenges of unsupervised feature selection in high-
dimensional data. By leveraging the Gram matrix from
NMF and combining it with self-representation tech-
niques, we effectively captured the structural relation-
ships between samples, leading to more meaningful and
relevant feature selection. The proposed iterative opti-
mization algorithm ensures efficient convergence, and
experimental results on multiple benchmark datasets
demonstrated that SRFSNMF significantly outperforms
state-of-the-art methods in terms of feature selection
performance. We also conducted a thorough sensitivity
analysis, confirming the robustness of SRFSNMF across
various parameter settings. Additionally, the method
proved resilient to noisy data, further validating its sta-
bility and reliability. Looking ahead, future research
could focus on strengthening the relationship between
NMF and self-representation to achieve even more effec-
tive feature selection. Furthermore, exploring methods
that simultaneously consider both the sample space and
feature space could provide deeper insights into complex
data structures and enhance the overall performance of
unsupervised feature selection models.

References

[1] P. Tiwari, F. S. Movahed, S. Karami, F. Saberi-
Movahed, J. Lehmann, and S. Vahdati A self-
representation learning method for unsupervised fea-
ture selection using feature space basis. Transactions
on Machine Learning Research, 2024.

[2] V. Jannesari, M. Keshvari, and K. Berahmand A novel
nonnegative matrix factorization-based model for at-
tributed graph clustering by incorporating complemen-
tary information. Expert Systems with Applications,
242:122799, 2024.

[3] C. Shao, M. Chen, Y. Yuan, and Q. Wang Projection
concept factorization with self-representation for data
clustering. Neurocomputing, 517:62–70, 2023.

[4] R. Chen Robust dual-graph regularized and mini-
mum redundancy based on self-representation for semi-
supervised feature selection. Neurocomputing, 490:104–
123, 2022.

[5] J. Miao, Y. Ping, Z. Chen, X.-B. Jin, P. Li, and L. Niu
Unsupervised feature selection by non-convex regular-
ized self-representation. Expert Systems with Applica-
tions, 173:114643, 2021.

[6] C. Tang, X. Liu, M. Li, P. Wang, J. Chen, L. Wang,
and W. Li Robust unsupervised feature selection via
dual self-representation and manifold regularization.
Knowledge-Based Systems, 145:109–120, 2018.

270



Naserasadi et.al. SRFSNMF: A New UFS Model Amirkabir University of Technology, October 23-24, 2024

[7] Y.-T. Guo, Q.-Q. Li, and C.-S. Liang The rise of non-
negative matrix factorization: algorithms and applica-
tions. Information Systems, page 102379, 2024.

[8] Y. Dong, H. Che, M.-F. Leung, C. Liu, and Z. Yan
Centric graph regularized log-norm sparse non-negative
matrix factorization for multi-view clustering. Signal
Processing, 217:109341, 2024.

[9] F. Yahaya, M. Puigt, G. Delmaire, and G. Roussel A
framework for compressed weighted nonnegative matrix
factorization. IEEE Transactions on Signal Processing,
pages 1–13, 2024.

[10] A. Hajiveiseh, S. A. Seyedi, and F. Akhlaghian Tab
Deep asymmetric nonnegative matrix factorization for
graph clustering. Pattern Recognition, 148:110179,
2024.

[11] X. He, D. Cai, and P. Niyogi Laplacian score for feature
selection. In Advances in Neural Information Processing
Systems, volume 18, pages 507–514, 2005.

[12] D. Cai, C. Zhang, and X. He Unsupervised feature se-
lection for multi-cluster data. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 333–342, 2010.

[13] P. Zhu, W. Zuo, L. Zhang, Q. Hu, and S. C. K.
Shiu Unsupervised feature selection by regularized
self-representation. Pattern Recognition, 48(2):438–446,
2015.

[14] U. Shaham, O. Lindenbaum, J. Svirsky, and Y. Kluger
Deep unsupervised feature selection by discarding nui-
sance and correlated features. Neural Networks, 152:34–
43, 2022.

[15] L. Xu, R. Wang, F. Nie, and X. Li Efficient top-k
feature selection using coordinate descent method. In
Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 37, number 9, pages 10594–10601, 2023.

271



272


	Session 3A
	Self-Representation Unsupervised Feature Selection based on Non-Negative Matrix Factorization (Hossein Nasser Assadi, Faranges Kyanfar, Farid Saberi-Movahed, Abbas Salemi)


