
On the Space Complexity of Counting Triangles Using Oracles

Hossein Jowhari* Arash Rahmati�

Abstract

In this paper we study data stream algorithms for ap-
proximating the number of triangles under the assump-
tion that the algorithm has unlimited access to an oracle
that answers certain queries about the input graph. We
present both upper bounds (algorithms) and space lower
bounds for this problem. More specifically, our bounds
apply to algorithms that use a degree oracle (given a
vertex, the oracle provides the degree of the queried
vertex) and an edge-triangle oracle. Given the query
edge {u, v}, an edge-triangle oracle answers whether the
edge {u, v} participates in a triangle or not. In ad-
dition, we implement two single-pass algorithms (and
the associated oracles) in both the edge-arrival and the
vertex-arrival models to evaluate their performance on
real-world datasets. Despite the inaccuracies of the ora-
cles used in our experiments, our study shows that they
can improve the performance of state-of-the-art triangle
counting algorithms on some real-world graphs.

Keywords: Triangle Counting, Learning Augmented
Algorithms, Data Stream Algorithms

1 Introduction

Graphs are useful structures that are used to model real-
world problems by representing relationships between
entities. Computing the structural properties of a graph
that models a real-world problem provides insight and
facilitates the analysis of the problem. An important
structural property of a graph, with many applications,
is its number of triangles, i.e. the number of triplets of
vertices in which each vertex is connected to the other
two vertices.

The problem of counting the number of triangles in a
graph, represented as a stream of edges, was first in-
troduced in 2002 [2] and has ever since been widely
studied in the streaming model due to its numerous ap-
plications in spam detection, community mining, link
prediction, etc [1]. The problem has been studied un-
der the assumption of both single-pass [8] and multi-
pass algorithms [3]. Some researchers have focused on
the insertion-only model where edges cannot be deleted
once they are inserted [16, 14], whereas others have

*Faculty of Applied Mathematics, K. N. Toosi University of
Technology, jowhari@kntu.ac.ir

�Faculty of Applied Mathematics, K. N. Toosi University of
Technology, arashrahmati@email.kntu.ac.ir

worked on the dynamic setting [19, 20], which handles
edge deletions as well. The order of edges is divided
into three main categories: arbitrary order, random or-
der, and the vertex arrival. The most challenging case is
the arbitrary order where edges may arrive in any order
that is decided by an adversary. In the random order
model, as the name suggests, the edges randomly ap-
pear in the stream. Finally, in the vertex-arrival model,
all edges incident to a certain vertex appear together
and thus every edge is seen twice in the stream. Lastly,
while most of the research in the field focuses on ap-
proximation with multiplicative error, there are papers
that propose algorithms with additive error [17].

Recently, the problem of counting triangles has been
explored within the framework of learning-augmented
algorithms. In this context, it is assumed that a (noisy)
predictor or oracle is available which is capable of an-
swering specific queries about the input, while the data
stream is processed. In practice, the predictor is con-
structed by training a machine learning model on pre-
vious instances of the problem or by utilizing other fea-
tures of the input. In some cases, a previously stored
instance of the problem can directly fulfill the role of the
predictor. Although the predictor may give incorrect or
approximate information about the input, assuming its
error is bounded, it has been practically demonstrated
that the additional information can enhance the effi-
ciency of the algorithms.

In this direction, Chen et al. [6] has initiated the
study of learning-augmented algorithms for estimating
the number of triangles in the data stream model. They
have given one-pass algorithms that use a heavy-edge
oracle (the oracle predicts whether an edge is involved
in many triangles or not). Specifically, they have shown
that using a heavy-edge oracle one can achieve space
bounds that is not possible without the oracle assump-
tion. They have also presented experimental results
that show the practicality of their approach over some
real-world datasets.

Inspired by the Chen et al’s work, in this paper we
study a related oracle called an “edge-triangle oracle”
which decides whether an edge participates in at least
one triangle or not. We also consider the “degree oracle”
which provides the degree of a vertex once asked (the
degree oracle has been considered before in a work by
McGregor et al. [14]). We revisit previous algorithms
and observe that in some cases the space usage is im-
proved (or the number of passes is reduced) when an

253

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

edge-triangle or a degree oracle is available. We also
show space lower bounds which indicate that even with
unlimited access to a perfect oracle one needs a cer-
tain amount of space to get an estimate of the number
of triangles. Our theoretical bounds are presented in
details in Section 1.3. On the experimental side, we
show the edge-triangle oracle can be helpful in practice.
More specifically, our experiments show that, in both
edge-arrival and vertex-arrival models, using an edge-
triangle oracle in combination with the approach used
in [6], we can achieve better estimates in low memory
settings.

1.1 Preliminaries

Given a graph G(V,E) with m edges and n vertices, we
focus on (ϵ, δ)-estimation of T (G), the number of tri-
angles in the graph using randomized algorithms with
high probability. In other words, we need to guaran-
tee P[|T̂ − T (G)| > ϵT (G)] < δ where T̂ is our esti-
mate. We only work on the insertion-only model in this
paper. Let ∆(G), ∆E , and ∆V denote the maximum
degree of G, the maximum number of triangles on any
given edge, and the maximum number of triangles on
any given vertex respectively. Formal definitions of the
oracles in previous works and the one we introduce for
the first time are as follows.

Definition 1 (Degree Oracle) Given a vertex u, a
degree oracle, Deg-Oracle(.), returns the degree of the
vertex, i.e. Deg-Oracle(u) = du.

Definition 2 (Heavy-Edge Oracle) If te denotes
the number of triangles incident to the edge e = {u, v},
a heavy-edge oracle, Heavy-Oracle(e), returns TRUE if
te > θ and FALSE otherwise, where θ is the heaviness
threshold.

Definition 3 (Edge-Triangle Oracle) Given an
edge e, an edge-triangle oracle, Edge-Tri-Oracle(e),
returns TRUE if te > 0 and FALSE otherwise.

Due to the randomized nature of our algorithms,
we repeatedly need to use Chebyshev’s inequality and
Chernoff bounds to complete our proofs of correctness.
For brevity and avoiding repetitions, we will useMedian-
of-Means Improvement from [5] which is stated as fol-
lows.

Lemma 1 (Median-of-Means Improvement [5])
There is a universal positive constant c such that the
following holds. Let the random variable X be an unbi-
ased estimator for a real quantity Q. Let {Xij}i∈[t],j∈[k]

be a collection of independent random variables with
each Xij distributed identically to X, i.e. E[Xij] = Q,
where

t = c log
1

δ
, and k =

3Var[X]

ϵ2(E[X])2
.

Let Z = mediani∈[t]

(
1
k

∑k
j=1 Xij

)
. Then, we have

P (|Z −Q| ≥ ϵQ) ≤ δ,

i.e., Z is an (ϵ, δ)-estimate for Q.
Thus, if an algorithm can produce X using s bits of

space, then there is an (ϵ, δ)-estimation algorithm using

O

(
s · Var[X]

(E[X])2
· 1
ϵ2

log
1

δ

)
bits of space.

1.2 Previous Work

We have summarized the space bound of the existing al-
gorithms in the arbitrary order for one-pass and multi-
pass settings in Table 1 and Table 2. We use Õ to
suppress logarithmic factors that often appear in ran-
domized algorithms due to independent repetitions. We
use T rather than T (G) as it is obvious what we are re-
ferring to.

Ref. Space Oracle

[15] Õ(m(ϵ−2∆E/T + ε−1/
√
T)) -

[9] Õ(ϵ−2m∆2/T) -

[16] Õ(ϵ−2m∆/T) -

[10] Õ(ϵ−1m
√
∆E/T) -

[10] Õ(ϵ−1m
√
∆V /T) -

[8] Õ(ϵ−2(m/T)(∆E +
√
∆V)) -

[6] Õ(ϵ−1(m/
√
T +
√
m)) heavy-edge

Table 1: Previous one-pass, arbitrary order triangle
counting algorithms

Apart from dependency on T and m, we observe that
all of the previous algorithms, except for [6], are depen-
dent on ∆E (Note that ∆E ≤ ∆ and ∆E ≤ ∆V .) Even
the last work took advantage of a heavy-edge oracle to
remove dependency on ∆E . A heavy edge in their work
is one that is involved in at least θ triangles.

Ref. Space Pass Oracle

[7] Õ(ϵ−2.5m/
√
T) 2 -

[14] Õ(ϵ−2m/
√
T) 2 -

[14] Õ(ϵ−2m3/2/T) 3 degree

[3] Õ(ϵ−2m3/2/T) 4 -

Table 2: Space bound of the previous multi-pass, arbi-
trary order triangle counting algorithms

254

Jowhari et.al. Counting Triangles Using Oracles Amirkabir University of Technology, December 18-19, 2024

From table 2, the algorithm of [3] can also run in 3
passes if given access to a degree oracle. It is impor-
tant to note that depending on whether T > m or not,
algorithms with space complexity of either m3/2/T or
m/
√
T can outperform the other one.

1.3 Our Results

Our results are of both theoretical and practical inter-
ests. In theory, our upper bounds (algorithms) are sum-
marized in table 3. In practice, we run a modified ver-
sion of the algorithms of [6] where we have added an
oracle that detects the unimportant edges (edges that
are not involved in any triangle.) The oracle works by
either directly using the previous instances of the graph
or training machine learning models as a guide to guess
the unimportant edges. Our experimental results show
that edge-triangle oracles that directly use previous in-
stances of the graph to guess the unimportant edges are
accurate enough in terms of both relative error and the
variance compared to the one-pass streaming algorithm
of Chen et al. However, when we use machine learning
models to train the oracles on Reddit Hyperlinks dataset,
the trained oracles are not accurate enough to improve
our estimates of T .

Space Pass Order Oracle

Õ(ϵ−2∆) 1 arbitrary edge-triangle

Õ(ϵ−2m3/2/T) 2 random degree

Õ(ϵ−2
√
m) 3 arbitrary

edge-triangle
degree

Table 3: Our triangle counting algorithms in theory

We also prove the following lower bounds.

1. Any one pass streaming algorithm that approxi-
mates the number of triangles in a graph within
1 + ϵ factor and has unlimited access to an edge-
triangle oracle needs Ω(ϵ−1∆) bits of space, where
ϵ ∈ (0, 1/4].

2. Any one pass randomized streaming algorithm that
distinguishes triangle-free graphs from graphs with
at least Ω(n) triangles, and Ω(n2) edges, and has
unlimited access to a degree oracle requires Ω(n2)
bits of space.

2 Algorithms

In this section we present our algorithms in theory for
the triangle counting problem that assume the existence
of an oracle.

2.1 Degree oracle

With a degree oracle, we build up on the algorithm of
[3]. Let Te be the number of triangles on edge e where
the maximum degree of the triangle is not on this edge.
More precisely,

Te={u,v} = {s ∈ V (G) | {s, u} ∈ E(G) ∧ {s, v} ∈ E(G)

∧ ds > max{du, dv}}.

The comparison of vertices are based on their degrees,
and if degrees are equal, the names of vertices are com-
pared lexicographically. Thus,

∑
e∈E(G) Te = T and it

has been proved [3] that Te ≤
√
2m. At this point, we

propose algorithm 1.

Algorithm 1 Õ(ε−2m3/2/T)-Space, 2-Pass Algorithm

Pass 1:
1: Select one edge e1 = {u, v} using reservoir sampling.

Pass 2:
2: WLOG, we assume du > dv using the degree oracle
3: (Y, du

′, f lag, e2) ← (0, 0, 0, ∅)
4: for edges in the form ei = {u,wi} do
5: if Deg-Oracle(wi) > du then
6: du

′ ← du
′ + 1

7: if coin(1/du
′)=“head” then

8: (e2, f lag)← (ei, 0)
9: else

10: if ei completes the wedge e1e2 then
11: flag ← 1

12: if flag = 1 then Y ← 2du
′

13: X ← mY
14: return X

In algorithm 1, the outcome of coin(p) is “head” with
probability p. We use du

′ to denote the number of neigh-
bors of u with degrees higher than du. In the first pass,
the algorithm samples one edge using reservoir sampling
uniformly at random [21]. In the second pass, the algo-
rithm samples only 1 neighbor of u. However, the degree
oracle helps us sample what we call a “good” neighbor,
one that has a higher degree than those of u and v. Note
that in [3], they had to sample multiple neighbors since
they could not detect “good” neighbors and thus the
space complexity of one independent execution of their
algorithm was not O(1). Finally, the algorithm waits
for the arrival of the third, completing edge of the tri-
angle after wi (the “good” neighbor) has been sampled.
We will now calculate the expectation and the variance
of the output random variable of algorithm 1 and prove
theorem 2.

Theorem 2 Given graph G as a stream of edges in the
random order model, there is a 2-pass algorithm that
benefits from a degree oracle and approximates T (G)

within 1 + ϵ factor using Õ(m
3/2

ϵ2T) space.

255

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

Proof. If we assume that the algorithm has sampled ei
in the first pass, we can calculate E[Y | ei]. This is the
part we need to assume the random order since the third
edge may not appear after wi is sampled if an adversary
has ordered the edges. So, the fraction 1/2 assumes the
order is random and the last edge may appear after the
second edge with probability 0.5.

E[Y | ei] =
Tei

du
′
1

2
2du

′ = Tei

So,

E[X] = mE[Y] = m(
1

m
E[Y | e1] + · · ·+

1

m
E[Y | em])

= m
1

m

∑
e∈E

Te = T

We now proceed to calculate an upper bound on the
variance.

Var[X] = Var[mY] = m2Var[Y] ≤ m2E[Y 2]

= m2 1

m

∑
e∈E

E[Y 2|e]

= m
∑
ei∈E

Tei

du
′
1

2
2du

′2du
′

≤ 2mmax
u∈V
{du′}

∑
ei∈E

Tei

= 2m
√
2mT = O(m3/2T)

Now that we have the upper bound on the variance of
our unbiased estimator and that we know each execution
requires O(1) space, we use lemma 1 to calculate the
number of repetitions required as follows.

Repetitions =
3Var[X]

ε2E[X]
2 c log (

1

δ
) = O(

m3/2T

ε2T 2
c log (

1

δ
))

= Õ(
m3/2

ε2T
)

□

2.2 Edge-triangle oracle

The work of [16] proposed a single-pass streaming algo-
rithm in the arbitrary order model that approximates T
in Õ(ϵ−2m∆/T) space with multiplicative error. Having
access to an edge-triangle oracle as described in defini-
tion 3, it is easy to see how we can prove the following
theorem. In fact, all that is required is that the first
edge r1 in their work should be sampled from what we
call “good” edges that participate in at least one tri-
angle. Then, m would be replaced by m′, which is the
number of edges that are involved in at least one trian-
gle. Knowing m′ ≤ 3T would then lead to the following
theorem.

Theorem 3 Given graph G as a stream of edges, there
is a 1-pass algorithm that benefits from an edge-triangle
oracle and approximates T (G) within 1+ ϵ factor using

Õ(∆(G)
ϵ2) space.

Proof. Follows from the algorithm in Pavan et. al.
[16]. □

2.3 Degree & Edge-triangle oracles

In this section, we explore the power of having access
to both oracles of edge-triangle and degree. Similar to
what we proposed in section 2.1, we use the degree ora-
cle to sample “good” neighbors. Furthermore, we sam-
ple a “good” edge in the first pass similar to section
2.2. In order to make it work in the arbitrary order
model, we require an additional pass over the stream.
The pseudocode of this algorithm is illustrated in algo-
rithm 2 where we assume du > dv.

Algorithm 2 Õ(ε−2
√
m)-Space, 3-Pass Algorithm

Pass 1:
1: (m′, e1) ← (0, ∅)
2: for edges ei in the stream do
3: if Edge-Tri-Oracle(ei) = “TRUE” then
4: ▷ ei is in a triangle.
5: m′ ← m′ + 1
6: e1 = {u, v} ← ei w.p. (1/m′)

Pass 2:
7: (Y, du

′, e2) ← (0, 0, ∅)
8: for edges in the form ei = {u,wi} do
9: if Deg-Oracle(wi) > du then

10: du
′ ← du

′ + 1
11: e2 ← ei w.p. (1/du

′)

Pass 3:
12: if {wi, v} ∈ E then ▷ the wedge is in a triangle.
13: Y ← du

′

14: return X = m′Y

Theorem 4 Given graph G as a stream of edges, there
is a 3-pass algorithm that benefits from a degree ora-
cle and an edge-triangle oracle, and approximates T (G)
within 1 + ϵ factor using Õ(ϵ−2

√
m) space.

Proof. Following the same procedure as in theorem 2
we see that:

E[X] = T, Var[X] = O(m′√mT) = O(
√
mT 2)

Since the space complexity of one execution of the al-
gorithm is O(1), the space complexity is the number of
repetitions required to achieve (1 + ϵ) approximation,

256

Jowhari et.al. Counting Triangles Using Oracles Amirkabir University of Technology, December 18-19, 2024

which is:

Repetitions =
3Var[X]

ε2E[X]
2 c log (

1

δ
) = O(

√
mT 2

ε2T 2
c log (

1

δ
))

= Õ(

√
m

ε2
)

□

3 Lower bounds

Our lower bounds are based on reductions from the well-
known indexing problem. In the INDEX(n) problem,
two parties Alice and Bob communicate to answer a
question about their input. Alice holds a bit vector
x ∈ {0, 1}n and Bob holds a query index i ∈ {1, · · · , n}.
Bob wants to know the value of x[i]. We have the fol-
lowing fact regarding the communication complexity of
the Indexing problem.

Fact 5 [12] Any one-way randomized communication
protocol for INDEX(n) problem that succeeds with
probability at least 3/4 requires Ω(n) bit of communi-
cation.

We first show a lower bound for streaming algorithms
that use an edge-triangle oracle.

Theorem 6 Let ϵ ∈ (0, 1
4]. Any 1-pass streaming al-

gorithm that approximates the number of triangles in a
graph within 1+ ϵ factor and has unlimited access to an
edge-triangle oracle needs Ω(∆ϵ) bits of space.

Proof. We use a reduction from a variant of the in-
dexing problem. In the INDEX(n, k) problem, Al-
ice holds an n-bit length string A (with exactly n/2
number of 1’s in it) and Bob holds a query subset
Q ⊆ [n] = {1, · · · , n} with |Q| = k. It is promised that
A is fixed on Q (i.e. for all i ∈ Q and j ∈ Q we have
A[i] = A[j].) Starting with Alice, the players exchange
messages and at the end Bob should answer whether
A[Q] = 1 or A[Q] = 0. By a straightforward reduction
from the regular Indexing problem, it can be shown that
any 1-way communication protocol for INDEX(n, k)
requires Ω(n/k) bits of communication.

We show a one-pass streaming algorithm for approx-
imating the number of triangles can be used as a 1-way
protocol for the INDEX(n, k) problem. Let d be a
positive integer. Consider an instance of INDEX(n, k)
problem where k is a positive integer whose value will
be determined later. Given their input, Alice and
Bob define the edge set of a graph G with vertex set
V (G) = X ∪ Y ∪Z where |X| = |Y | = n and |Z| = dk .
First we define the edge set of Alice. For each i ∈ [n], if
A[i] = 1, Alice adds the edge (xi, yi). At the other side,
Bob having the query subset Q ⊆ [n], for each i ∈ Q,
he connects both xi and yi to d new vertices in Z.

Note that G has 2n + dk vertices and since A has n
2

number of 1’s, the graph G has n
2 + 2dk edges. From

the construction, we get that if A[Q] = 1 then G will
have exactly dk triangles otherwise it is triangle-free.

Now, given graph G, we construct an augmented
graph G′ in the following way. For each edge (u, v)
in G, we add a new vertex uv and add the edges (uv, u)
and (uv, v) to G. The main observation here is that
every edge in G′ necessarily participates in a trian-
gle and thus one cannot gain any extra information
if an edge-trianlge oracle is called on G′. Also note
that ∆(G′) = 2∆(G) ≤ 2(d + 1), and by the defini-
tion of G′, we have T (G′) = |E(G)| + T (G). Conse-
quently if A[Q] = 1 we have T (G′) = n

2 +3dk otherwise
T (G′) = n

2 + 2dk.
Setting k and d such that kd = ϵn, we get that a

1+O(ϵ) approximation algorithm for counting triangles
can distinguish between the case where T (G′) = n

2 +
3ϵn and T (G′) = n

2 + 2ϵn. Consequently, it can solve
the INDEX(n, k) instance. This proves a space lower
bound of Ω(n/k) = Ω(dϵ) for approximating the number
of triangles as stated in the theorem. □

It is known that one-pass streaming algorithms for
distinguishing triangle-free graphs from graphs with at
least T = Ω(n) triangles and m edges require Ω(m)
bits of space [4]. Here we extend this hardness result
to streaming algorithms that have unlimited access to a
degree oracle for the case where m = Ω(n2).

Theorem 7 Any 1-pass randomized streaming algo-
rithm that distinguishes triangle-free graphs from graphs
with at least Ω(n) triangles and m = Ω(n2) edges, and
has unlimited access to a degree oracle requires Ω(n2)
bits of space.

Proof. For the sake of the proof, we define the 2-player
communication game problem RBI(n, d). In this game,
Alice holds a regular bipartite graph G = (A ∪ B,E)
where |A| = |B| = n and every vertex in G has degree
d. In the other side, Bob holds the pair a ∈ A and
b ∈ B. Bob wants to know if the edge (a, b) exists in G
or not. Using a reduction from INDEX(nd), we can
show any randomized one-way protocol for RBI(n, d)
requires Ω(nd) bits of communication. To see this,
let x ∈ {0, 1}nd/2, i ∈ {1, · · · , nd/2} be an instance
of the Indexing problem where n is an even number.
Alice converts her bit-vector x into a regular bipartite
graph as follows. First Alice divides x into d parts
x1 · · ·xd. Each part has length n/2. For each j ∈
{1, · · · , d}, given xj Alice creates a (non-overlapping)
perfect matching Mj between the sets A = {a1, · · · , an}
and B = {b1, · · · , bn} as follows. This ensures that, at
the end, each vertex in the graph has degree d. First we
describe the perfect matching associated with x1. The
other matchings are described similarly as shown below.

257

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

b1a1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

Figure 1: An example illustrating the perfect matching
for x1 = 101 in the proof of Theorem 7.

Suppose x1[1] = 1. In this case we put the edges (a1, b1)
and (a2, b2). Otherwise, if x1[1] = 0, we put the edges
(a1, b2) and (a2, b1). Following this pattern, if x1[k] = 1
we put the edges (a2k−1, b2k−1) and (a2k, b2k). Oth-
erwise, when x1[k] = 0, we put the edges (a2k−1, b2k)
and (a2k, b2k−1). Figure 1 shows an example for the bit
string x1 = 101

Now for the perfect matching M2, we first perform
circular shifts of the vertices in B (we do it twice) and
then use x2 to create the matching M2 between A and
the shifted B in the same way we used x1 to create M1.
Generally, to create Mj , first we do 2j−2 circular shifts
of the vertices in B and then put the matching between
A and the shifted B in a similar manner. Putting the
perfect matchings M1, · · · ,Md, together, we get a bi-
partite d-regular graph G = (A∪B,E). It is easy to see
that if Bob wants to know the value of x[i], by querying
an edge in the graph G, he can find out the answer.

Now we establish a reduction from RBI(n, d) to our
problem of interest. Given an instance of RBI(n, d),
Bob adds a series of vertices and edges to the underly-
ing graph G = (A ∪B,E) as follows. Having the query
(a, b), Bob adds the set of vertices U = {u1, · · · , un}.
For each ui, he connects ui to both a ∈ A and b ∈ B.
Note that if the edge (a, b) exists, this will create n
triangles. At the same time this raises the degrees of
a and b to d + n. To make these vertices indistin-
guishable from the rest of the vertices in A ∪B (in the
terms of the degree), Bob also adds two sets of vertices
A′ = {a′1, · · · , a′n} and B′ = {b′1, · · · , b′n}. For each i,
Bob connects a′i to all the vertices in A/{a}. In the same
manner, for each i, Bob connects b′i to all the vertices in
B/{b}. Now each vertex in A∪B has degree d+n. The
vertices in A′ ∪B′ have degree n− 1 and the vertices in
U are of degree 2. Let G′ be the resulting graph. Note
that G′ has 5n vertices and has m = Θ(nd+n2) number

of edges. More important, the degree of each vertex in
G′ is known by Alice and Bob. Therefore, using a de-
gree oracle does not reveal any new information about
the other party’s input. As said above, if the edge (a, b)
exists in G, the resulting graph G′ will have exactly n
triangles otherwise it will be triangle-free. The state-
ment of the theorem follows from the lower bound for
RBI(n, d) and setting d = O(n). □

4 Experimental Results

4.1 Datasets

We use three datasets described as follows.

� Oregon1: This dataset consists of 9 graphs
{#1, ...,#9} of Autonomous Systems (AS) peer-
ing information inferred from Oregon route-views
between March 31 2001 and May 26 2001 on the
internet [13].

� As-Caida2: The dataset contains 122 CAIDA Au-
tonomous System (AS) graphs, from January 2004
to November 2007. Each file contains a full AS
graph derived from a set of RouteViews BGP ta-
ble snapshots. We will use the data from 2006 and
2007 in our experiments. There are 52 instances of
the graph of 2006 {#1, ...,#52}, and there are 46
instances of the graph of 2007 {#1, ...,#46}.

� Reddit Hyperlinks3: The hyperlink network [11] rep-
resents the directed connections between two sub-
reddits (a subreddit is a community on Reddit, a
social network). Subreddit 300-dimensional em-
beddings are also available for most of the nodes.
The network is extracted from publicly available
Reddit data of 2.5 years from Jan 2014 to April
2017. The subreddit-to-subreddit hyperlink net-
work is extracted from the posts that create hy-
perlinks from one subreddit to another. We say a
hyperlink originates from a post in the source com-
munity and links to a post in the target community.

The statistics of the first instances of Oregon and As-
Caida along with the statistics of Reddit Hyperlinks are
summarized in table 4.

4.2 How to make oracles

We build oracles in two ways similar to [6].

� In Oregon and As-Caida, we directly use previous
data. In fact, we look at the first instance of
each graph and memorize those important (heavy)
edges. We also memorize unimportant edges (edges
not involved in any triangle).

1https://snap.stanford.edu/data/Oregon-1.html
2https://snap.stanford.edu/data/as-Caida.html
3https://snap.stanford.edu/data/soc-RedditHyperlinks.html

258

Jowhari et.al. Counting Triangles Using Oracles Amirkabir University of Technology, December 18-19, 2024

� In Reddit Hyperlinks, since we have node represen-
tations, f(u), we train machine learning models.
More specifically, we train a linear regression model
as our heavy-edge oracle, and a logistic regression as
our edge-triangle oracle that outputs yes/no. Sim-
ilar to [6], the labels are calculated using the exact
count, and the features of edges are made using
node embeddings as follows.

f(e = {u, v}) =
(f(u), f(v), ∥f(u)− f(v)∥1, ∥f(u)− f(v)∥2)︸ ︷︷ ︸

602-dimensional vector

par O#1 C2006#1 C2007#1 Reddit
n 10670 21202 24013 35775
m 22002 42925 49332 124330
T 17144 30433 40475 406391
∆ 2312 2381 2377 2336
∆E 526 578 602 725
∆V 3431 3530 4590 31967

Table 4: Statistics of the graph datasets (O:Oregon,
C:Caida)

4.3 One-Pass Algorithms of Interest

We compare our algorithms with the work of Chen et
al., algorithms 1 and 4 in [6]. This is because they have
already shown that over most of the datasets (Oregon,
Caida-2006, and Caida-2007) their algorithms (in both
edge-arrival and vertex-arrival models) work more ac-
curately than previous best one pass streaming algo-
rithms (ThinkD [19] and WRS [18].) So at least on
these datasets, the algorithms of Chen et al. are now
the state of the art. Furthermore, we emphasize that the
proposed algorithms in this work follow Chen et al’s idea
of using heavy-edge oracles except that here we also add
the oracles for the edge-triangle predictions. This idea,
in addition to their idea of keeping important (heavy)
edges, helps improve the accuracy and more importantly
lowers the variance of our estimates over multiple exe-
cutions.

Note that these practical algorithms have not been
discussed in the theoretical side of our paper; thus, we
refer the reader to [6] for details. However, the main
idea is to use an oracle to keep heavy edges separately
and sample light edges. Then, triangles, based on their
heavy and light edges, are divided into different groups;
each of them will have its unique counter. Each counter
is finally divided by the probability of the triangle being
sampled and counted. At the end, all the final values
are summed to estimate the total number of triangles
in the graph.

4.4 Comparison of Algorithms

We use Oregon#1, Caida-2006#1, and Caida-2007#1
as the oracles to detect the heavy and the unimpor-
tant edges. The input of the algorithms are Ore-
gon#4, Caida-2006#30, and Caida-2007#25. The er-

ror is
∣∣∣(1− T̂ /T)× 100

∣∣∣. We run each algorithm 50

times and calculate the median relative error. The col-
ors around each line is ± 1 STD of the relative errors in
50 independent executions.

3 6 9

·103

2

4

6

8

10

Space

R
el
at
iv
e
E
rr
o
r
(%

)

Oregon#4

Chen
Proposed

3 6 9

·103

2

4

6

8

10

Space

R
el
at
iv
e
E
rr
o
r
(%

)

Caida-2006#30

Chen
Proposed

3 6 9

·103

2

4

6

8

10

Space

R
el
at
iv
e
E
rr
or

(%
)

Caida-2007#25

Chen
Proposed

Figure 2: Comparison (edge-arrival) Oregon and CAIDA
datasets

We observe from Figure 2 that the proposed algo-
rithm in all cases has lower variance especially when the
space is very limited. The median relative errors of the
proposed algorithm, except for the space of 9000 edges,

259

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

have been lower compared to the work of Chen et al.
[6]. It is reasonable that the proposed algorithm cannot
outperform the work of Chen et al when we are allowed
to sample many edges since the oracles are not perfect,
and we lose some triangles by mistakenly removing some
edges involved in triangles. Despite a higher error at
9000 sampled edges, the variance of the proposed algo-
rithm is still lower.

For the Oregon dataset, we evaluate the proposed al-
gorithm’s performance over other instances as well in
figure 3. In this experiment the space allowed for the
two algorithms is 3000 edges. Thus, both algorithms
have been given the same resources. The vertical lines
in figure 3 show ± 1 STD of the relative errors in 50
independent executions.

2 3 4 5 6 7 8 9

2

4

6

8

Oregon#

R
el
at
iv
e
E
rr
or

(%
)

Chen
Proposed

Figure 3: Comparison of algorithms on other instances
of Oregon (edge-arrival)

To further evaluate our idea of removing unimportant
edges, we implemented the first algorithm of [6] which
is in the vertex arrival model. Vertex-arrival model
is a simpler setting in which vertices arrive with their
neighbors one at a time. The errors become smaller
in this setting and using our idea of removing unnec-
essary edges makes the errors even smaller as seen in
Figure 4 for datasets Oregon#4, CAIDA2006#30 and
CAIDA2007#25.

Since each algorithm is executed 50 times to calculate
the median error, the variance of the output values are
illustrated in figure 5. The values of variance is calcu-
lated for both algorithms at 6000 edges, accompanied
by those in the edge-arrival model for the Oregon#4
dataset. This also confirms the reduction in variance
by removing the unnecessary edges. Similar reductions
will be observed at other space capacities, which we have
excluded for brevity.

3 6 9

·103

2

4

6

8

10

Space

R
el
a
ti
ve

E
rr
o
r
(%

)

Oregon#4

Chen
Proposed

3 6 9

·103

2

4

6

8

10

Space

R
el
at
iv
e
E
rr
o
r
(%

)

CAIDA2006#30

Chen
Proposed

3 6 9

·103

2

4

6

8

10

Space

R
el
at
iv
e
E
rr
or

(%
)

CAIDA2007#25

Chen
Proposed

Figure 4: Comparison (vertex-arrival) OREGON and
CAIDA datasets

We finally present our results on Reddit Hyperlinks
based on the oracles we train. As mentioned earlier, we
combine features of the nodes to create features for the
edges. However, out of the 124K edges, we can only
make features for 103K edges due to lack of features
for some nodes. Next, a logistic regression is trained to
predict whether or not an edge is involved in at least
one triangle. A linear regression model is also trained to
predict which edges are heavy (involved in many trian-
gles). The first half of the edges serve as the training
set for the models. The results are shown in figure 6.

As we observe from figure 6, the proposed algorithm
does not reduce the variance, nor does it result in better
median errors in most cases. In the following section,
we will discuss why this has happened.

260

Jowhari et.al. Counting Triangles Using Oracles Amirkabir University of Technology, December 18-19, 2024

EA EA’ VA VA’
0

3,000

1,739

1,092

503 356V
a
ri
a
n
ce

Figure 5: OREGON#4, Variance of outputs for Space =
6000 edges. (EA: Chen’s Edge-Arrival Alg, VA: Chen’s
Vertex-Arrival Alg, ’: removing unnecessary edges)

3 6 9

·103

2

4

6

8

10

Space

R
el
at
iv
e
E
rr
o
r
(%

)

Reddit Hyperlinks

Chen
Proposed

Figure 6: Comparison (ML-based oracles)

4.5 Discussion

In the previous section we showed how using an edge-
triangle oracle can improve the accuracy of the learning-
augmented algorithms in [6]. In practice, our main idea
is to remove the unnecessary edges that do not par-
ticipate in any triangle. One might argue that such
removals require extra space to memorize the unimpor-
tant edges; however, this is merely a demonstration of
how removal of the unnecessary edges can lead to im-
provements of state-of-the art algorithms. In fact, or-
acles can be machine learning models that do not nec-
essarily occupy much space but are capable of deciding
whether or not an edge is involved in a triangle with
high confidence. Such models are only trained on the
first few instances of the graph and are subsequently
saved and benefited from in the future instances to de-
tect the unimportant edges.

Additionally, we note that the improvement of the
proposed method relies highly on detecting edges that
do not participate in any triangles. When we directly
use previous data, the edge-triangle oracle, although not
perfect, is accurate enough to help us outperform the al-
gorithm of Chen et al. However, when we use logistic re-
gression on the first half of the edges in Reddit Hyperlinks,
our approach does not lead to a better estimate. This
happens since the model does not predict the unimpor-

tant edges accurately enough. When directly using the
previous data, the oracles successfully remove over 8000
unnecessary edges, whereas when using logistic regres-
sion, the oracle only removes 3000 unnecessary edges.
Considering the 120K edges of the graph of Reddit Hy-
perlinks, removing 3000 edges is negligible and hence
does not not lead to better estimates. We present the
accuracy of the oracles in Tables 5 and 6. There, Posi-
tive means the oracle has declared an edge to be part of
a triangle while Negative means the oracle has declared
an edge unnecessary. NI means the oracle cannot make
a prediction on that edge because it either had not ap-
peared in previous instances or does not have a feature
vector (representation) for the regression model.

Oracle TP TN FP FN NI Acc
O#1 11061 8534 522 517 2113 %94
C6#1 16299 16836 1734 1589 9627 %90
C7#1 19102 19906 1528 1540 9434 %92

Table 5: Oracle Accuracy (Direct Use of Previous Data)

Oracle TP TN FP FN NI Acc
LR 81431 3148 16039 3147 20565 %81

Table 6: Logistic Regression Accuracy

5 Conclusion

In this paper, we studied the problem of Triangle Count-
ing in the streaming model with the assumption that
the algorithm has access to oracles that provide infor-
mation about the input. Here we have only considered
the insertion-only model where the edges are inserted
but not deleted. We have presented both theoretical
bounds and some experimental results.

In theory, we proposed three algorithms using one,
two, and three passes respectively. The first algorithm
takes advantage of an edge-triangle oracle, a new oracle
introduced in this paper. The second algorithm assumes
access to a degree oracle, and the third one is given ac-
cess to both oracles. In terms of the order of edges,
except for the second algorithm which is in the ran-
dom order model, the other two algorithms are in arbi-
trary order. The space complexity of the algorithms are
Õ(ϵ−2∆), Õ(ϵ−2m3/2/T), and Õ(ϵ−2

√
m) respectively.

We also proved space lower bounds for 1-pass triangle
counting algorithms that benefit from edge-triangle and
the degree oracles.

In our experiments, we have implemented the idea
of removing edges that do not participate in any trian-
gles by calling oracles. These oracles can directly use
previous instances of the graph, or they can be built
by training machine learning models. Our experiments
show that in the autonomous systems’ datasets, due to

261

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

the high accuracy of edge-triangle oracles that directly
use previous data, the proposed algorithms can lead to
improvements over state-of-the-art (the algorithms of
Chen et al [6]). This happens specifically when space
usage is low both in the edge-arrival and the vertex-
arrival model. However, when we use machine learning
models to train oracles, the accuracy is not high enough
to outperform the work of Chen et al.

Finally we want to highlight two theoretical problems
that are left open in this area.

1. Can we show an improved algorithm or space lower
bound for multi-pass algorithms that use an edge-
triangle oracle?

2. What is the space complexity of algorithms for ap-
proximating the number of triangles that use a de-
gree oracle?

References

[1] M. Al Hasan and V. S. Dave. Triangle counting in large
networks: a review. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 8(2):e1226,
2018.

[2] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reduc-
tions in streaming algorithms, with an application to
counting triangles in graphs. In SODA, volume 2, pages
623–632, 2002.

[3] S. K. Bera and A. Chakrabarti. Towards tighter space
bounds for counting triangles and other substructures
in graph streams. In 34th Symposium on Theoretical
Aspects of Computer Science, 2017.

[4] V. Braverman, R. Ostrovsky, and D. Vilenchik. How
hard is counting triangles in the streaming model? In
F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska, and
D. Peleg, editors, Automata, Languages, and Program-
ming - 40th International Colloquium, ICALP 2013,
Riga, Latvia, July 8-12, 2013, Proceedings, Part I, vol-
ume 7965 of Lecture Notes in Computer Science, pages
244–254. Springer, 2013.

[5] A. Chakrabarti. Data stream algorithms lecture notes,
2020.

[6] J. Y. Chen, T. Eden, P. Indyk, H. Lin, S. Narayanan,
R. Rubinfeld, S. Silwal, T. Wagner, D. P. Woodruff,
and M. Zhang. Triangle and four cycle counting
with predictions in graph streams. arXiv preprint
arXiv:2203.09572, 2022.

[7] G. Cormode and H. Jowhari. A second look at count-
ing triangles in graph streams (corrected). Theoretical
Computer Science, 683:22–30, 2017.

[8] R. Jayaram and J. Kallaugher. An optimal algorithm
for triangle counting in the stream. arXiv preprint
arXiv:2105.01785, 2021.

[9] H. Jowhari and M. Ghodsi. New streaming algorithms
for counting triangles in graphs. In Computing and
Combinatorics: 11th Annual International Conference,

COCOON 2005 Kunming, China, August 16–19, 2005
Proceedings 11, pages 710–716. Springer, 2005.

[10] N. Kavassery-Parakkat, K. M. Hanjani, and A. Pavan.
Improved triangle counting in graph streams: power
of multi-sampling. In 2018 IEEE/ACM International
Conference on Advances in Social Networks Analysis
and Mining (ASONAM), pages 33–40. IEEE, 2018.

[11] S. Kumar, W. L. Hamilton, J. Leskovec, and D. Juraf-
sky. Community interaction and conflict on the web. In
Proceedings of the 2018 World Wide Web Conference on
World Wide Web, pages 933–943. International World
Wide Web Conferences Steering Committee, 2018.

[12] E. Kushilevitz and N. Nisan. Communication complex-
ity. Cambridge University Press, 1997.

[13] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 177–187, 2005.

[14] A. McGregor, S. Vorotnikova, and H. T. Vu. Better al-
gorithms for counting triangles in data streams. In Pro-
ceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages
401–411, 2016.

[15] R. Pagh and C. E. Tsourakakis. Colorful triangle count-
ing and a mapreduce implementation. Information Pro-
cessing Letters, 112(7):277–281, 2012.

[16] A. Pavan, K. Tangwongsan, S. Tirthapura, and K. Wu.
Counting and sampling triangles from a graph stream.
Proc. VLDB Endow., 6(14):1870–1881, 2013.

[17] C. Seshadhri, A. Pinar, and T. G. Kolda. Fast triangle
counting through wedge sampling. In Proceedings of the
SIAM Conference on Data Mining, volume 4, page 5,
2013.

[18] K. Shin. Wrs: Waiting room sampling for accurate tri-
angle counting in real graph streams. In 2017 IEEE In-
ternational Conference on Data Mining (ICDM), pages
1087–1092. IEEE, 2017.

[19] K. Shin, J. Kim, B. Hooi, and C. Faloutsos. Think be-
fore you discard: Accurate triangle counting in graph
streams with deletions. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases, pages 141–157. Springer, 2018.

[20] L. D. Stefani, A. Epasto, M. Riondato, and E. Upfal.
Triest: Counting local and global triangles in fully dy-
namic streams with fixed memory size. ACM Trans-
actions on Knowledge Discovery from Data (TKDD),
11(4):1–50, 2017.

[21] J. S. Vitter. Random sampling with a reservoir.
ACM Transactions on Mathematical Software (TOMS),
11(1):37–57, 1985.

262

	Session 3A
	On the Space Complexity of Counting Triangles Using Oracles (Hossein Jowhari, Arash Rahmati)

