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Enhancing Epidemiological Models with Parameter Estimation and Symbolic
Regression: A Case Study on COVID-19
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Abstract

This study explores three significant topics in contempo-
rary research: parameter estimation, Symbolic Regres-
sion and the COVID-19 pandemic. Parameter estimation
is a fundamental aspect of statistical analysis, focusing
on deriving unknown parameter values from empirical
data. This study employs methodologies such as Max-
imum Likelihood Estimation (MLE) and advanced mod-
eling techniques to refine the system of equations for a
better fit to observed data. In the context of the COVID-
19 pandemic, parameter estimation plays a pivotal role
in developing epidemiological models that inform public
health strategies. The SIDARTHE model, for instance,
offers an innovative approach by categorizing individuals
based on their infection status and Severity of symptoms,
providing crucial insights into the virus’s transmission dy-
namics. In addition to traditional parameter estimation,
this work leverages Symbolic Regression (SR) to update
and refine the right-hand side of the system of equa-
tions based on the data. SR, a machine learning-based
regression technique rooted in genetic programming, un-
covers new equations. By integrating statistical methods,
SR and epidemic modeling, this study highlights the im-
portance of simultaneously updating coefficients and dis-
covering new governing equations to enhance our under-
standing of disease spread and guide effective intervention
measures.
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1 Introduction

1.1 COVID-19:Overview and Modeling Approaches

Coronavirus disease 2019 (COVID-19) is a contagious ill-
ness caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Researchers first identified
the initial case in Wuhan, China, in December 2019. The
clinical manifestations of COVID-19 are diverse, com-
monly including symptoms such as fever, fatigue, cough,
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difficulty breathing and loss of taste and smell. These
symptoms can appear anywhere from one to fourteen days
following exposure to the virus, with at least one-third of
infected individuals remaining asymptomatic [8].

Most individuals infected with SARS-CoV-2 experience
mild to moderate respiratory illness and recover without
needing specialized treatment. However, specific pop-
ulations, particularly older adults and those with pre-
existing health conditions such as cardiovascular disease,
diabetes, chronic respiratory disorders, or cancer, are at
a higher risk of developing severe complications. Impor-
tantly, individuals of any age can experience severe illness
or death from COVID-19 [2]. The virus primarily spreads
through respiratory droplets emitted from the mouth or
nose during activities like coughing, sneezing, speaking,
or breathing. This highlights the need for public health
measures to reduce virus transmission [1].

To effectively manage the COVID-19 epidemic, re-
searchers have developed various models to predict its
trajectory and inform control strategies. One such model
is the SIDARTHE model, which categorizes individuals
based on their infection status distinguishing between di-
agnosed and undiagnosed cases and assessing the severity
of symptoms. This distinction is crucial, as diagnosed in-
dividuals are typically isolated, reducing their potential
to spread the virus [4].

The SIDARTHE model builds on the classical SIR model
(Susceptible, Infected, Recovered) by incorporating a
more nuanced understanding of transmission dynamics.
It includes eight distinct stages of infection:

S: Susceptible (uninfected)

I: Infected (asymptomatic or mild, undiagnosed)

: Diagnosed (asymptomatic, detected)

: Ailing (symptomatic, undiagnosed)

: Recognized (symptomatic, diagnosed)

Threatened (infected with severe symptoms, detected)

: Healed (recovered)

5 2 8 » g

Extinct (deceased)

The model comprises the following ordinary differential
equations, each representing the dynamics of these stages



over time:

S(t) = —S(t)(al(t) + BD(t) + YA(t) + R(t)),
I(t) =

D(t) = eI(t) - (n + p)D(1),
A(t) = CI(H) = (8 + u+ R)A(L),

R(t) = nD(t) + 0A(1) — (v + OR(1),
T(t) = pA(t) + vR(t) — (o +T)T(D),

H(t) = M (t) + pD(t) + £ A(t) + ER(t) + 0T (1),
E(t) = 7T(t).

In these equations, «, B, 7, and § represent the
transmission rates associated with contacts between
susceptible individuals and those in various infection
states. The parameters € and 0 denote the detection rates
for asymptomatic and symptomatic cases, respectively.
The probabilities that infected individuals, whether
aware or not, develop clinically significant symptoms are
captured by ¢ and 7. Furthermore, p and v indicate
the rates at which undetected and detected individuals
develop severe symptoms. The mortality rate for those
with life-threatening symptoms is represented by 7, while
A, Kk, €, p, and o reflect recovery rates across the different
infected classifications [4].

1.2 Estimation Theory in Epidemiological Modeling

Estimation theory is a fundamental area of statistics fo-
cused on inferring unknown parameter values from empir-
ical data, which often includes random variations. These
parameters describe the characteristics of an underlying
system, and their values influence the distribution of the
measured data. The purpose of estimation techniques is
to derive accurate parameter estimates by analyzing this
data. Two primary approaches are typically employed in
estimation theory [6]:

1. The probabilistic approach, which assumes that the
measured data is random and that its probability distri-
bution depends on the parameters of interest [6]. This
approach is preferred for its ability to model uncertainty
in complex systems rigorously.

2. The set-membership approach, which posits that the
measured data vector belongs to a predefined set deter-
mined by the parameter vector [6]. This method is bene-
ficial in contexts where data is constrained within known
bounds, offering a more deterministic framework for pa-
rameter estimation.

Both approaches possess distinct advantages depending
on the application context; however, The probabilistic
approach is frequently chosen because of its flexibility in
managing varying degrees of uncertainty and the broader
range of statistical tools available for its implementation.
In this discussion, we utilize Maximum Likelihood Esti-

S(t)(al(t)+ BD(t) + vA(t) + 0R(t)) — (e + ¢+ N I(¢),
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mation (MLE), a widely employed method for parameter
estimation within a probabilistic framework. MLE oper-
ates by determining the parameter values that maximize
the likelihood function, which represents the probability
of the observed data given specific parameter values [7].
The point that maximizes the likelihood function serves
as the maximum likelihood estimate. MLE is a highly
versatile and intuitive method, making it one of the most
commonly used techniques in statistical inference.

MLE is particularly well-suited to large datasets and com-
plex models, providing reliable parameter estimates as
sample sizes increase. Its properties, such as consistency,
which refers to convergence toward the valid parameter
values as the sample size increases, and efficiency, which
denotes achieving the lowest possible variance among es-
timators, make it a preferred choice in many scientific
and engineering applications. Additionally, the ability
of Maximum Likelihood Estimation (MLE) to simulta-
neously accommodate multiple parameters represents a
significant advantage in real-world situations that involve
numerous unknown factors.

In practical applications, parameter estimation is essen-
tial for identifying the physical coefficients in systems that
require real-time monitoring and control. For instance,
in sensor-based systems, each sensor has unique physical
parameters that describe its behavior. By analyzing the
statistical characteristics of the model parameters and the
corresponding physical parameters, the system can detect
potential faults or malfunctions [5].

This estimation method begins by analyzing the system’s
operational mechanism to derive the relationship between
model parameters and the system’s output. Real-time
data is then gathered, and the system computes the out-
put, comparing it with the predicted output based on the
estimated model parameters. This comparison enables
the detection of discrepancies, allowing for early identifi-
cation of faults or deviations from regular operation. The
ability to perform real-time parameter estimation makes
this method highly applicable in dynamic systems that
require continuous monitoring and adjustment.

In this study, we analyze actual data collected over
46 days to estimate the parameters of the SIDARTHE
model. By applying MLE to this dataset, we aim to re-
fine the model’s accuracy in predicting COVID-19 dy-
namics, which can inform public health interventions and
improve resource allocation. Integrating parameter esti-
mation techniques into epidemiological modeling is essen-
tial for enhancing the robustness of predictions and the
efficacy of intervention strategies. By accurately charac-
terizing the transmission dynamics of COVID-19, we can
better inform public health responses and ensure a more
practical approach to managing the ongoing pandemic.



1.3 Symbolic regression

Symbolic regression (SR) is a machine learning-based re-
gression technique rooted in genetic programming that
draws upon methodologies from various scientific disci-
plines. SR has the unique ability to derive analytical
equations directly from data, eliminating the necessity for
prior knowledge of the system under investigation. This
capability allows SR to uncover deep and complex rela-
tionships that are generalizable, interpretable, and ap-
plicable across diverse scientific, technological, economic,
and social domains [3].

Unlike traditional regression methods (e.g., linear or
quadratic regression), which require predefined indepen-
dent variables and adjust numerical coefficients for opti-
mal fitting, SR simultaneously identifies both the param-
eters and the governing equations [3].

2 Method

First, the data are organized and prepared to apply the
parameter estimation technique. We begin by defining
the function that represents the system of equations,
along with determining the values of the initial pa-
rameters obtained through experiments and previous
research. For each equation in the system of ordinary
differential equations, we take an approximation for the
right-hand side by taking its integral. In the next step,
we use the maximum likelihood method and perform
optimization considering the negative log-likelihood to
minimize the function. This allows us to identify the
optimal parameters and update the coefficients in the
equations. The results show a clear improvement in
accuracy and performance.

In Figure 1, the blue curve represents the real data
collected over 46 days. The green curve is based on the
system of equations derived from previous research and
laboratory samples, using the initial parameter values.
Without applying parameter estimation, it is evident that
this model does not fit well with the real data. This
suggests that the system of equations proposed in ear-
lier studies is not an appropriate model for prediction our
data. In contrast, the red curve shows the results after
adjusting the parameters. The model now aligns much
more closely with the real data, indicating that the mod-
ified equation provides a more accurate representation.
The same procedure has been applied to the other fig-
ures as well. Notably, the system of eight equations was
not evaluated individually. Instead, the equations were
considered simultaneously, and the parameter estimates
were optimized to ensure that all equations fit the data
collectively. The initial values of the parameters without
applying the parameter estimation technique are given in
the captions of the Figures 1-8. After applying the pa-
rameter estimation technique, the optimized parameters
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are in the table below:

Parameter List

Value
-1.883329153060913
5.4156646728515625
-0.6877768635749817
-0.5272416472434998
-0.516588568687439
3.5108792781829834
1.0128684043884277
-3.528564929962158
0.11585894227027893
0.42635196447372437
-1.0851908922195435
5.254979610443115
-0.1200798898935318
-7.785756587982178
-5.365184307098389
1.3259201049804688

Parameter
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Figure 1: Initial values of the parameters are:

a=0.57,3=0.0114,7y=0.456,6=0.0114.
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Figure 2: Initial values of the parameters are: a=0.57,
£=0.0114, ~=0.456, §=0.0114, €=0.171, (=0.1254,
A=0.0342.
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Figure 3: Initial values of the parameters are: ¢=0.171,
1n=0.1254, p=0.0342.

Figure 6: Initial values of the parameters are: u=0.0171,
v=0.0274, 0=0.0171, 7=0.01.
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Figure 7: Initial values of the parameters are: A=0.0342,

p=0.0342, k=0.0171, £€=0.0171, 0=0.0171.
Figure 4: Initial values of the parameters are: (=0.1254,
0=0.3705, ©=0.0171, k=0.0171.
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Figure 8: Initial values of the parameters are: 7=0.01.
0.0 1

After updating the coefficients with parameter esti-
mates for the new system of equations, we apply a ma-
chine learning technique called symbolic regression to ad-
just the right-hand sides of the equations, align them with

Figure 5: Initial values of the parameters are: n=0.1254,
0=0.3705, v=0.0274, £=0.0171.
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real data, and identify new relationships between vari-
ables. This process is done using real data and functions
available in Python libraries (gplearn). Then the right
side of the equations is replaced by the newly derived
equations. In Figure 9, which corresponds to the first
equation of the system related to the S, we have plotted
the values on the right-hand side of the equation based
on the real data collected over 46 days. The blue points
represent these values so that the horizontal axis indi-
cating time (in days) and the vertical axis showing the
function values on the right-hand side of the equation.
The orange points, meanwhile, represent the values ob-
tained after applying symbolic regression to the proposed
function, which approximates the right-hand side of the
equation. The same procedure has been used for other
Figures 10-16 as well.

Symbolic Regressorl: Score =0.8557
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Figure 9: The blue points are the real data for S and the
orange points are the estimates of the symbolic regression
function calculated with the score mentioned above.
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Figure 10: The blue points are the real data for I and the
orange points are the estimates of the symbolic regression
function calculated with the score mentioned above.
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Figure 11: The blue points are the real data for D and the
orange points are the estimates of the symbolic regression
function calculated with the score mentioned above.
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Figure 12: The blue points are the real data for A and the

orange points are the estimates of the symbolic regression
function calculated with the score mentioned above.
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Figure 13: The blue points are the real data for R and the
orange points are the estimates of the symbolic regression
function calculated with the score mentioned above.



Symbolic Regressorl: Score =0.9288
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Figure 14: The blue points are the real data for T and the
orange points are the estimates of the symbolic regression
function calculated with the score mentioned above.
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Figure 15: The blue points are the real data for H and the

orange points are the estimates of the symbolic regression
function calculated with the score mentioned above.
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Figure 16: The blue points are the real data for E and the
orange points are the estimates of the symbolic regression
function calculated with the score mentioned above.
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