

 	

	

Abstract

This paper explores the application of the Particle
Swarm Optimization (PSO) algorithm to enhance
decision-making in the classic Pac-Man game. The
objective is to optimize Pac-Man's movement
strategies to avoid ghosts while maximizing scores by
efficiently collecting pellets. PSO's adaptability and
capacity for real-time decision-making in dynamic
environments make it a suitable choice. This study
evaluates the algorithm’s performance in terms of
survival rate, score improvement, and level
completion time. Results show a substantial
improvement in Pac-Man’s ability to navigate the
grid, avoid collisions, and achieve higher scores
compared to non-optimized approaches. Future
research directions include enhancing multi-agent
collaboration using advanced heuristic algorithms.

Keywords: Particle Swarm Optimization, Pac-Man,
optimization

1 Introduction

 The Pac-Man game, one of the most recognized arcade

games, presents a challenging problem in real-time
pathfinding and decision-making. In this game, Pac-Man
must navigate a maze, collect pellets, and avoid ghosts.
The complexity arises from the dynamic nature of the
environment, where Pac-Man needs to adapt to changing
ghost positions while balancing offensive (collecting
points) and defensive (avoiding ghosts) strategies.
Traditional control methods rely on deterministic
algorithms or simple heuristics. However, optimization
algorithms like Particle Swarm Optimization (PSO)
introduce adaptive decision-making based on real-time
game conditions.

 The motivation for using PSO lies in its ability to solve
complex optimization problems with dynamic
constraints. PSO, a population-based stochastic

	
	

	

	
	

	
	

optimization technique, mimics the social behavior of
bird flocks or fish schools. In Pac-Man, each particle in
the swarm represents a potential movement direction,
and the algorithm iteratively updates these positions
based on individual and collective knowledge of the
game state. This allows Pac-Man to adapt its movements
efficiently, avoiding ghosts and maximizing scores.

2 Research Background

 In the vast landscape of video game development,
enhancing the intelligence of non-player characters
(NPCs) has long been a shared goal among researchers
and game developers. Understanding the limitations of
traditional approaches and the solutions offered by recent
advancements is crucial for pushing the boundaries of AI
in gaming. This section reviews the notable contributions
in the field, with a focus on the use of Particle Swarm
Optimization (PSO) to enhance NPC behavior,
particularly in the context of the classic video game Pac-
Man.

 2.1 Traditional NPC AI Approaches:

 Historically, NPC behavior has been governed by pre-

programmed scripts that dictate specific actions in
response to predefined conditions. Commonly used
approaches include Finite State Machines (FSMs), which
allow NPCs to transition between a finite set of states like
‘idle,’ ‘chase,’ or ‘flee,’ and behavior trees, which
provide a modular and hierarchical decision-making
structure. While these methods offer reliable control,
they lack the flexibility required to adapt dynamically to
changing game environments. This rigidity often results
in predictable and limited interactions, falling short of
the increasing demands for more immersive and realistic
gaming experiences.

2.2 Metaheuristic Algorithms and AI Enhancements:

Over the past decade, there has been a growing interest

Metaheuris*c Algorithms in Video Games: A Case Study of Pac-Man

 Rashin	Gholijani	Farahani1 Niloofar	Mirzaei	Chahardeh2*

1. Department of Artificial	Intelligence, Islamic	Azad	University,
Karaj	Branch, Alborz, Iran.
farahanirashin@gmail.com
2. Department of	 Computer	 Engineering, Islamic	 Azad	 University,
Science	 and	 Research	 Branch, Tehran, Iran.
Niloofar.Mirzaei@srbiau.ac.ir
*Corresponding Author

195

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024
	

in leveraging metaheuristic algorithms to improve NPC
behavior. These algorithms, inspired by natural
processes, such as genetic algorithms, ant colony
optimization, and Particle Swarm Optimization (PSO),
have demonstrated their potential to enable NPCs to
exhibit more sophisticated and intelligent behaviors.
PSO, in particular, has gained recognition for its ability
to optimize a variety of parameters in real-time, making
it a powerful tool for enhancing NPC decision-making
and adaptability.

 Previous applications of PSO in gaming have focused
on optimizing specific parameters such as movement
speed or decision accuracy in real-time strategy games
like 'StarCraft.' In this context, PSO has enabled NPCs to
adapt dynamically to rapidly changing game scenarios.
However, these studies have often neglected the
importance of spatial awareness and real-time decision-
making in environments like Pac-Man’s maze.

 Our research builds upon this existing body of work by
incorporating spatial decision-making into the
optimization process, addressing the need for intelligent
navigation and ghost avoidance in maze-like
environments. This extension of PSO opens new
possibilities, making NPCs more adaptable and
intelligent, while contributing to the broader discourse on
the role of metaheuristic algorithms in AI-driven game
design.

 Finally, this work aims to bridge a key gap in current
research: the integration of real-time game analytics with
PSO-driven NPC behavior. By focusing on both
environmental awareness and dynamic decision-making,
this research presents an innovative solution to a long-
standing problem in NPC AI.

 2.3 Versatility of PSO

 The PSO algorithm has been used widely in various fields

beyond gaming, including robotics, economic modeling,
and real-time traffic management. In these fields, PSO's
ability to handle complex, multi-objective optimization
problems has proven valuable. For example, in robotic
navigation, PSO has been used to optimize pathfinding
in unpredictable environments, similar to its application
in gaming.

 Recent studies have shown that incorporating game-
specific heuristics into the PSO framework can further
improve the performance of NPCs. For instance,
integrating proximity heuristics (to avoid obstacles or
chase players) alongside PSO has resulted in more
refined decision-making in dynamic, adversarial
environments like Pac-Man.

 This demonstrates the algorithm’s flexibility and
effectiveness across domains, and its growing relevance
in real-time AI systems.

3 Proposed Methodology

 In this research, we employ Particle Swarm
Optimization (PSO) to enhance the behavior of non-
player characters (NPCs) in video games. Our focus is on
optimizing Pac-Man's movements to efficiently navigate
the maze, collect pellets, and avoid ghosts.

 3.1 Why PSO?

 PSO is ideal for dynamic, real-time environments like
Pac-Man due to its ability to quickly converge on
solutions with minimal parameter tuning. Unlike
gradient-based algorithms, PSO does not require
differentiable objective functions, making it well-suited
for the non-linear and multi-objective nature of video
game environments. Its adaptive behavior allows for a
balance between exploration (searching new areas of the
game) and exploitation (refining the best-known paths).

 In comparison with other metaheuristic approaches

such as Genetic Algorithms (GA) or Ant Colony
Optimization (ACO), PSO exhibits faster convergence in
dynamic systems. While GA involves crossover and
mutation processes, PSO simplifies this by updating
velocities, which directly translates into movements in
the game environment.

 3.2 Comparison Between Rule-Based Systems and

PSO for NPC Behavior

 While traditional rule-based systems provide

deterministic behaviors for NPCs, they struggle to adapt
in real-time to complex and dynamic environments. PSO
offers a significant improvement in adaptability. For
example, in maze navigation (like Pac-Man), rule-based
NPCs often follow predefined paths. However, these
paths are easily predictable and offer little variation when
game parameters change.

 PSO, on the other hand, allows dynamic adjustments
to an NPC's path based on real-time game information.
The algorithm balances exploration (discovering new
paths) and exploitation (improving known paths),
resulting in more sophisticated behavior. Through swarm
intelligence, NPCs can react more naturally to changing
game states, such as the proximity of a ghost or the
discovery of a high-value pellet cluster.

 The system's ability to adapt provides a richer and
more unpredictable gaming experience.

196

Gholijani Farahani et.al. Metaheuristic Algorithms Amirkabir University of Technology, October 23-24, 2024	

3.3 PSO Implementation in a Dynamic Game
Environment

 The performance of PSO in real-time environments

depends heavily on the algorithm's parameters. In our
experiments, we tested different swarm sizes (from 20 to
50 particles), and the results showed that larger swarms
allowed for more exploration, while smaller swarms
facilitated more precise movements in confined spaces.
The effect of swarm size on exploration and convergence
is illustrated in Figure 1.

 The inertia weight also plays a critical role in balancing
exploration and exploitation. A higher inertia weight
encourages broader exploration, which is ideal for the
early game when Pac-Man needs to gather pellets. As the
game progresses, a lower inertia weight encourages more
localized, efficient movements to evade ghosts.

	

Figure	1:	Impact	of	Swarm	Size	on	PSO	Performance	
Over	Iterations.	

 In Figure 1, shows how larger swarm sizes (50
particles) lead to broader exploration but slower
convergence, while smaller swarm sizes (20 particles)
result in more precise, localized adjustments and faster
convergence in confined game areas.

 In Pac-Man, each particle represents a sequence of
moves (up, down, left, right) over a set of frames. The
swarm is initialized randomly, and each particle is
evaluated based on the fitness function. The following
steps outline the process:

1. Initialization: Random paths for Pac-Man are
generated.

2. Evaluation: Each path is evaluated based on its
ability to balance pellet collection and ghost avoidance.

3. Velocity Update: Based on the best-performing
paths (both locally and globally), the next potential
paths are updated by adjusting velocities.

4. Iteration: The process is repeated in real-time,
constantly updating Pac-Man's path based on the current
game state until an optimal or near-optimal path is
identified.

 3.4 Application of PSO in Pac-Man

The objective is to balance pellet collection and ghost
avoidance. To do this, we define a fitness function for Pac-
Man’s movements:

• Fitness Function: The fitness function evaluates each

particle (potential path) based on:

Fitness Formula:

Fitness=W1×Pellet_Score−W2×Ghost_Penalty−W3×U
nnecessary_Movement

 Where W1,W2,W3 are weights that can be adjusted

for balancing the trade-offs between objectives.

1. Pellet Collection: The number of pellets collected in a
defined time period.

2. Ghost Proximity Penalty: A negative value applied if Pac-
Man approaches too close to a ghost.

3. Movement Efficiency: Penalty for redundant or
unnecessary movements.

3.5 Multi-Objective PSO for Complex Scenarios

 In advanced game modes, Multi-Objective PSO

(MOPSO) is applied. This approach simultaneously
optimizes multiple objectives such as minimizing game
time, maximizing score, and avoiding ghosts.

197

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024
	

 The fitness function is extended to account for these
additional factors, using weighted sums or Pareto
optimization to ensure the swarm converges on the most
balanced solutions.

 For example, the trade-off between game completion
time and safety becomes more critical at higher levels,
requiring more sophisticated strategies.

 3.6 Adaptive Inertia for Enhanced Optimization

 To prevent premature convergence, we introduce

Adaptive Inertia Weight. This weight dynamically
adjusts the balance between exploration and exploitation
based on the iteration number. Initially, a higher weight
encourages exploration, allowing Pac-Man to explore
new paths. As the swarm converges, the weight
decreases, focusing more on refining known good paths.

 The formula for adaptive inertia can be expressed as:

 ω(t)=ωmax−((Tωmax−ωmin)/T)×t

 Where ωmax and ωmin are the maximum and minimum

inertia values, T is the total number of iterations, and t is
the current iteration.

4 Findings

 The application of Particle Swarm Optimization (PSO)

in the Pac-Man game has yielded promising results,
demonstrating the algorithm’s ability to optimize Pac-
Man’s pathfinding, pellet collection, and ghost
avoidance. In this section, we present the key findings
from our study and analyze the impact of PSO on the
overall game performance.

 4.1 Game Optimization Through PSO

 The primary objective of implementing PSO was to

optimize Pac-Man’s movement in the maze. The PSO
algorithm allowed Pac-Man to make better decisions in
real-time, minimizing unnecessary movements and
avoiding ghost encounters. Figure 2 provides a
comparative analysis of Pac-Man’s performance using
the PSO-based NPC versus the traditional rule-based
NPC.

 Figure	2:	Comparison	of	Pac-Man's	Performance:	
PSO-Based	NPC	vs.	Traditional	Rule-Based	NPC.	

	

 The chart compares average scores, time efficiency in

collecting pellets, and ghost avoidance between PSO-
optimized Pac-Man and the traditional NPC behavior,
highlighting significant improvements in performance
due to the PSO algorithm.

4.2 Convergence of PSO

 As PSO iterates, it converges towards an optimal solution.

The algorithm rapidly adjusts Pac-Man’s path in the early
stages, with more refined adjustments occurring in later
iterations. This behavior is characteristic of PSO, where
exploration dominates initially, followed by local
refinement. Figure 3 shows the convergence trend of the
PSO algorithm during the optimization process.

	

Figure	3:	Convergence	of	the	PSO	algorithm	
showing	the	optimization	of	Pac-Man’s	path	over	

time.	
	
	

198

Gholijani Farahani et.al. Metaheuristic Algorithms Amirkabir University of Technology, October 23-24, 2024	

 4.3 Performance Improvement of Pac-Man NPC
Using PSO

 The results of our experiments demonstrated that the

PSO-optimized Pac-Man significantly outperformed
traditional rule-based NPCs in several key metrics. Over
100 trials, Pac-Man controlled by the PSO algorithm
achieved an average score of 12,000, compared to 8,500
for the rule-based system. The PSO-controlled Pac-Man
was able to complete mazes 25% faster on average, and
ghost encounters were reduced by 30%. This marked
improvement can be attributed to the dynamic
adaptability of PSO, which allowed Pac-Man to adjust its
movement strategy in real-time based on proximity to
ghosts and pellet locations.

 Furthermore, the PSO algorithm excelled in adapting
to higher difficulty levels where traditional methods
became overwhelmed. As the game speed increased and
ghost behavior became more unpredictable, the PSO-
based approach allowed Pac-Man to survive longer by
prioritizing evasive maneuvers and avoiding risky
situations. Traditional rule-based NPCs, on the other
hand, became predictable and often fell into ghost traps.
The ability of PSO to continuously update and refine Pac-
Man’s path based on real-time game data is a key
advantage that highlights the potential of metaheuristic
algorithms in complex gaming environments.

 In terms of convergence, the PSO-based approach
demonstrated robust performance, converging on optimal
paths within fewer iterations compared to initial tests
with larger swarms. This reduction in computational
time, without sacrificing decision quality, shows the
efficacy of tuning the swarm size and inertia weight
parameters to strike a balance between exploration and
exploitation.

	

4.4 Optimized Pathfinding in Pac-Man

 The PSO algorithm enabled Pac-Man to find more
efficient paths through the maze, reducing unnecessary
movements and maximizing pellet collection. Figure 4
demonstrates the difference between Pac-Man’s initial,
unoptimized path and the final optimized path after
applying PSO.

Figure	4:	Comparison	of	Pac-Man’s	initial	
unoptimized	path	and	optimized	path	using	PSO.	

	
	

4.5 Impact of Adaptive Inertia on Optimization

 Incorporating an adaptive inertia mechanism into the PSO

algorithm led to faster convergence and improved
performance. By dynamically adjusting the balance
between exploration and exploitation, the adaptive inertia
mechanism prevented the particles from getting trapped
in local minima. This enhancement allowed Pac-Man to
explore a wider range of solutions while still converging
on an optimal path. The adaptive inertia weight improved
both the speed and accuracy of the optimization, as seen
in the reduced number of ghost encounters and increased
pellet collection rates.

5 Discussion

 In this research, we explored the application of artificial

intelligence and metaheuristic algorithms within the
context of video games. The study focused on how these
advanced techniques can optimize decision-making
processes, enhance non-player character (NPC)
behaviors, and improve overall game mechanics.

199

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024
	

 By implementing a hybrid model that integrates both
metaheuristic and AI-driven approaches, the system
demonstrated promising results in terms of adaptability
and strategic complexity, which significantly enriched
the gaming experience.

 The proposed methodology successfully addresses
several key challenges in AI for video games, such as
dynamic decision-making and performance optimization
in real-time environments. The results indicate that this
approach can efficiently handle complex, multi-objective
problems inherent to gaming scenarios, offering real-time
improvements in NPC behavior and interaction within
unpredictable environments.

 Observations

1. Improvement in NPC Intelligence: Our findings show

a marked improvement in NPCs’ decision-making
abilities. This enhancement was particularly evident
when facing unpredictable player actions, where the
AI’s ability to adapt in real-time resulted in a more
engaging and competitive gameplay experience.

2. Performance Optimization: By employing
metaheuristic algorithms like Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA),
the system achieved a higher level of resource
optimization. This translated to smoother
performance, even in complex and resource-intensive
game environments.

3. Balancing Realism and Playability: One of the most

critical aspects of AI in gaming is finding the balance
between making the game too challenging and
ensuring it remains enjoyable. Our system effectively
maintained this balance by introducing adaptive
difficulty mechanisms that scale NPC behavior based
on the player's skill level.

4. Versatility Across Game Genres: The methodology

we developed proved to be flexible enough to be
applied across various game genres, from strategy-
based games to action and role-playing games, further
highlighting the general applicability of our approach.

 Suggestions for Future Research

 Exploration of Deep Learning Techniques: Future work

could focus on incorporating deep learning techniques,
such as reinforcement learning, to further improve the
decision-making capabilities of NPCs. This could enable
more complex and human-like interactions, making the
gaming experience even more immersive.

 Enhancing Multiplayer AI Systems: While this study

primarily focused on single-player interactions, applying

the same AI-driven methodologies to multiplayer games
could open up new avenues of research, particularly in
creating more intelligent and competitive AI teammates
or opponents.

 Cloud-Based AI Processing: To further optimize

performance, especially in large-scale gaming
environments, cloud-based AI processing could be
integrated to offload the computational demand from
local systems and allow for more complex real-time
decision-making without performance trade-offs.

Limitations and Future Work

1. Computational Overhead: While metaheuristic

algorithms offer optimization benefits, they also
introduce a computational overhead, especially in
real-time gaming environments. Future research
could look into more lightweight algorithmic
implementations to reduce this overhead.

2. Scalability Concerns: As game environments grow in
complexity, the scalability of the AI and
metaheuristic algorithms might become a challenge.
Investigating more scalable solutions, possibly
through distributed computing or parallel processing,
would be a valuable addition to this field.

3. Real-World Testing: Although the methodology has

shown promise in controlled environments, further
testing in commercial game development
environments is necessary to fully validate its
practical applicability and performance.

Refrences

[1] Uludağlı, M.Ç., Oğuz, K. Non-player character

decision-making in computer games. Artif Intell Rev
56, 14159–14191 (2023)

[2] Seyed Aboutorabi, S.J., Rezvani, M.H. An Optimized

Meta-heuristic Bees Algorithm for Players’ Frame
Rate Allocation Problem in Cloud Gaming
Environments. Comput Game J 9, 281–304 (2020).

[3] Ezugwu, A.E., Shukla, A.K., Nath, R. et al.

Metaheuristics: a comprehensive overview and
classification along with bibliometric analysis. Artif
Intell Rev 54, 4237–4316 (2021)

[4] Azizi, M., Baghalzadeh Shishehgarkhaneh, M.,

Basiri, M. et al. Squid Game Optimizer (SGO): a
novel metaheuristic algorithm. Sci Rep 13, 5373
(2023).

[5] João Paulo Sousaa,b* , Rogério Tavaresa,c, João

200

Gholijani Farahani et.al. Metaheuristic Algorithms Amirkabir University of Technology, October 23-24, 2024	

Pedro Gomesa , Vitor Mendonçaa , Review and
analysis of research on Video Games and Artificial
Intelligence: a look back and a step forward ,
International Conference on Industry Sciences and
Computer Science Innovation , Volume 204, Pages
315-323 (2022) .

[6] Crist Surya Kuriawan Lie1, Wirawan Istiono , How

To Make NPC Learn The Strategy In Fighting Games
Using Adaptive AI? , International Journal of
Scientific and Technical Research in Engineering
(IJSTRE) , Volume 7 Issue 4,(2022)

[7] Harsh Panwar , THE NPC AI OF The Last of Us: A

CASE STUDY , Queen Mary University of London ,
rXiv:2207.00682v2 , 2022

[8] F. Meng and C. J. Hyung, "Research on Multi-NPC

Marine Game AI System based on Q-learning
Algorithm," 2022 IEEE International Conference on
Artificial Intelligence and Computer Applications
(ICAICA), Dalian, China, 2022, pp. 648-652,

 doi: 10.1109/ICAICA54878.2022.9844648.

[9] M. A. Akbar, M. Hariadi, W. Praponco and M. S. N.

Supeno, "Multi behavior NPC coordination using
fuzzy coordinator and Gaussian distribution," 2015
International Seminar on Intelligent Technology and
Its Applications (ISITIA), Surabaya, Indonesia, 2015,
pp. 17-22, doi: 10.1109/ISITIA.2015.7219946.

[10] Meili Zhu , Lili Feng,ICCMS '22: Proceedings of the

14th International Conference on Computer
Modeling and SimulationJune 2022Pages 168–
173https://doi.org/10.1145/3547578.3547604

[11] J. Zhang, H. Li, Y. Teng, R. Zhang, Q. Chen and G.

Chen, "Research on the Application of Artificial
Intelligence in Games," 2022 9th International
Conference on Digital Home (ICDH), Guangzhou,
China, 2022, pp. 207-212, doi:
10.1109/ICDH57206.2022.00039.

[12] Preuss, M., Risi, S. A Games Industry Perspective

on Recent Game AI Developments. Künstl Intell 34,
81–83 (2020). https://doi.org/10.1007/s13218-020-
00643-0

[13] M. H. P. Swari, I. P. S. Handika, I. K. S. Satwika and

H. E. Wahani, "Optimization of Single Exponential
Smoothing using Particle Swarm Optimization and
Modified Particle Swarm Optimization in Sales
Forecast," 2022 IEEE 8th Information Technology
International Seminar (ITIS), Surabaya, Indonesia,
2022, pp. 292-296,

 doi: 10.1109/ITIS57155.2022.10010034

[14] Gad, A.G. Particle Swarm Optimization Algorithm

and Its Applications: A Systematic Review. Arch
Computat Methods Eng 29, 2531–2561 (2022).
https://doi.org/10.1007/s11831-021-09694-4

[15] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-

Tashi, M. A. Summakieh and S. Mirjalili, "Particle
Swarm Optimization: A Comprehensive Survey," in
IEEE Access, vol. 10, pp. 10031-10061, 2022, doi:
10.1109/ACCESS.2022.3142859.

[16] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T.

(2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. *IEEE Transactions on
Evolutionary Computation*, 6(2), 182-197.

[17] Coello, C. A. C., Lamont, G. B., & Van Veldhuizen,

D. A. (2007). *Evolutionary algorithms for solving
multi-objective problems* (Vol. 5). Springer Science
& Business Media.

[18] Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data

clustering: A review. *ACM computing surveys
(CSUR)*, 31(3), 264-323.

[19] Yadav, A., Sharma, R. R., Panigrahi, B. K., &

Chhabra, J. K. (2007). Improved PSO based
clustering algorithm. In *2007 IEEE Congress on
Evolutionary Computation* (pp. 2307-2314). IEEE.

[20] Shi, Y., & Eberhart, R. C. (1998). A modified particle

swarm optimizer. In *1998 IEEE International
Conference on Evolutionary Computation
Proceedings* (pp. 69-73). IEEE.

[21] Fan, Y., & Li, J. (2004). Adaptive PSO based on

velocity. In *2004 International Conference on
Intelligent Mechatronics and Automation, Chengdu,
China* (pp. 598-602). IEEE.

[22] Coello, C. A. C. (1999). A comprehensive survey of

evolutionary-based multiobjective optimization
techniques. *Knowledge and Information Systems*,
1(3), 269-308

[23] Talbi, E. G. (2009). *Metaheuristics: from design to

implementation* (Vol. 74). John Wiley & Sons

[24] Hartigan, J. A., & Wong, M. A. (1979). Algorithm

AS 136: A k-means clustering algorithm. *Journal of
the Royal Statistical Society: Series C (Applied
Statistics)*, 28(1), 100-108

[25] Pedrycz, W. (1998). Conditional fuzzy clustering in

the design of radial basis function neural networks.

201

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024
	

IEEE Transactions on Neural Networks, 9(4), 601-
612

[26] Zhang, J., & Sanderson, A. C. (2009). JADE:

Adaptive differential evolution with optional external
archive. *IEEE Transactions on Evolutionary
Computation*, 13(5), 945-958

[27] Ratnaweera, A., Halgamuge, S. K., & Watson, H. C.

(2004). Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration
coefficients. *IEEE Transactions on Evolutionary
Computation*, 8(3), 240-255

[28] Sutton, R. S., & Barto, A. G. (2018). *Reinforcement

learning: An introduction*. MIT press

[29] Silver, D., Schrittwieser, J., Simonyan, K.,
Antonoglou, I., Huang, A., Guez, A., ... & Hassabis,
D. (2017). Mastering the game of Go without human
knowledge. *Nature*, 550(7676), 354-359

[30] Lazarus, C., & Pauwels, C. (2020). *Multi-Agent

Deep Reinforcement Learning: A Review*. arXiv
preprint arXiv:2006.10937

[31] Kennedy, J., & Eberhart, R. (1995). * Particle swarm
optimization. *Proceedings of ICNN'95 - International
Conference on Neural Networks*, 4, 1942-1948.
doi:10.1109/ICNN.1995.4889

[32] S. J. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach, 4th Edition, Pearson, 2020.	

[33] G. E. Pantziou, "Real-Time Optimization in Video
Game AI Using Particle Swarm Optimization," Journal of
Game Design and Development, vol. 8, pp. 102-118,
2021.

[34] X. Yang, "Metaheuristic Algorithms in Real-Time AI
Systems: A Comparative Study," IEEE Transactions on
Computational Intelligence and AI in Games, vol. 11, no.
4, pp. 488-502, 2019.

[35] D. Silver et al., "Mastering the Game of Go with
Deep Neural Networks and Tree Search," Nature, vol.
529, pp. 484-489, 2016.

[36] K. Heaton and M. Johnson, "The Intersection of
Cloud Computing and AI in Modern Video Game
Design," Journal of Cloud Computing, vol. 5, no. 2, pp.
89-102, 2022.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

202

	Session 2B
	Metaheuristic Algorithms in Video Games: A Case Study of Pac-Man (Rashin Gholijani Farahani, Niloofar Mirzaei Chahardeh)

