
 
   	

	

Abstract 
 

This paper explores the application of the Particle 
Swarm Optimization (PSO) algorithm to enhance 
decision-making in the classic Pac-Man game. The 
objective is to optimize Pac-Man's movement 
strategies to avoid ghosts while maximizing scores by 
efficiently collecting pellets. PSO's adaptability and 
capacity for real-time decision-making in dynamic 
environments make it a suitable choice. This study 
evaluates the algorithm’s performance in terms of 
survival rate, score improvement, and level 
completion time. Results show a substantial 
improvement in Pac-Man’s ability to navigate the 
grid, avoid collisions, and achieve higher scores 
compared to non-optimized approaches. Future 
research directions include enhancing multi-agent 
collaboration using advanced heuristic algorithms. 

Keywords: Particle Swarm Optimization, Pac-Man, 
optimization 

1 Introduction 
 
       The Pac-Man game, one of the most recognized arcade 

games, presents a challenging problem in real-time 
pathfinding and decision-making. In this game, Pac-Man 
must navigate a maze, collect pellets, and avoid ghosts. 
The complexity arises from the dynamic nature of the 
environment, where Pac-Man needs to adapt to changing 
ghost positions while balancing offensive (collecting 
points) and defensive (avoiding ghosts) strategies. 
Traditional control methods rely on deterministic 
algorithms or simple heuristics. However, optimization 
algorithms like Particle Swarm Optimization (PSO) 
introduce adaptive decision-making based on real-time 
game conditions. 

           The motivation for using PSO lies in its ability to solve 
complex optimization problems with dynamic 
constraints. PSO, a population-based stochastic 

	
	

	
 

	
	

	
	  

optimization technique, mimics the social behavior of 
bird flocks or fish schools. In Pac-Man, each particle in 
the swarm represents a potential movement direction, 
and the algorithm iteratively updates these positions 
based on individual and collective knowledge of the 
game state. This allows Pac-Man to adapt its movements 
efficiently, avoiding ghosts and maximizing scores. 

 
 

2 Research Background 
 

       In the vast landscape of video game development, 
enhancing the intelligence of non-player characters 
(NPCs) has long been a shared goal among researchers 
and game developers. Understanding the limitations of 
traditional approaches and the solutions offered by recent 
advancements is crucial for pushing the boundaries of AI 
in gaming. This section reviews the notable contributions 
in the field, with a focus on the use of Particle Swarm 
Optimization (PSO) to enhance NPC behavior, 
particularly in the context of the classic video game Pac-
Man. 

 
       2.1 Traditional NPC AI Approaches: 
 
       Historically, NPC behavior has been governed by pre-

programmed scripts that dictate specific actions in 
response to predefined conditions. Commonly used 
approaches include Finite State Machines (FSMs), which 
allow NPCs to transition between a finite set of states like 
‘idle,’ ‘chase,’ or ‘flee,’ and behavior trees, which 
provide a modular and hierarchical decision-making 
structure. While these methods offer reliable control, 
they lack the flexibility required to adapt dynamically to 
changing game environments. This rigidity often results 
in predictable and limited interactions, falling short of 
the increasing demands for more immersive and realistic 
gaming experiences. 

 
2.2 Metaheuristic Algorithms and AI Enhancements: 

 
Over the past decade, there has been a growing interest 
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in leveraging metaheuristic algorithms to improve NPC 
behavior. These algorithms, inspired by natural 
processes, such as genetic algorithms, ant colony 
optimization, and Particle Swarm Optimization (PSO), 
have demonstrated their potential to enable NPCs to 
exhibit more sophisticated and intelligent behaviors. 
PSO, in particular, has gained recognition for its ability 
to optimize a variety of parameters in real-time, making 
it a powerful tool for enhancing NPC decision-making 
and adaptability. 

           Previous applications of PSO in gaming have focused 
on optimizing specific parameters such as movement 
speed or decision accuracy in real-time strategy games 
like 'StarCraft.' In this context, PSO has enabled NPCs to 
adapt dynamically to rapidly changing game scenarios. 
However, these studies have often neglected the 
importance of spatial awareness and real-time decision-
making in environments like Pac-Man’s maze. 

          Our research builds upon this existing body of work by 
incorporating spatial decision-making into the 
optimization process, addressing the need for intelligent 
navigation and ghost avoidance in maze-like 
environments. This extension of PSO opens new 
possibilities, making NPCs more adaptable and 
intelligent, while contributing to the broader discourse on 
the role of metaheuristic algorithms in AI-driven game 
design. 

           Finally, this work aims to bridge a key gap in current 
research: the integration of real-time game analytics with 
PSO-driven NPC behavior. By focusing on both 
environmental awareness and dynamic decision-making, 
this research presents an innovative solution to a long-
standing problem in NPC AI. 

 
       2.3 Versatility of PSO 
 
      The PSO algorithm has been used widely in various fields 

beyond gaming, including robotics, economic modeling, 
and real-time traffic management. In these fields, PSO's 
ability to handle complex, multi-objective optimization 
problems has proven valuable. For example, in robotic 
navigation, PSO has been used to optimize pathfinding 
in unpredictable environments, similar to its application 
in gaming. 

           Recent studies have shown that incorporating game-
specific heuristics into the PSO framework can further 
improve the performance of NPCs. For instance, 
integrating proximity heuristics (to avoid obstacles or 
chase players) alongside PSO has resulted in more 
refined decision-making in dynamic, adversarial 
environments like Pac-Man. 

         This demonstrates the algorithm’s flexibility and 
effectiveness across domains, and its growing relevance 
in real-time AI systems. 

 
 

3 Proposed Methodology 
 

       In this research, we employ Particle Swarm 
Optimization (PSO) to enhance the behavior of non-
player characters (NPCs) in video games. Our focus is on 
optimizing Pac-Man's movements to efficiently navigate 
the maze, collect pellets, and avoid ghosts. 
 

      3.1 Why PSO? 
 

      PSO is ideal for dynamic, real-time environments like 
Pac-Man due to its ability to quickly converge on 
solutions with minimal parameter tuning. Unlike 
gradient-based algorithms, PSO does not require 
differentiable objective functions, making it well-suited 
for the non-linear and multi-objective nature of video 
game environments. Its adaptive behavior allows for a 
balance between exploration (searching new areas of the 
game) and exploitation (refining the best-known paths). 

 
           In comparison with other metaheuristic approaches 

such as Genetic Algorithms (GA) or Ant Colony 
Optimization (ACO), PSO exhibits faster convergence in 
dynamic systems. While GA involves crossover and 
mutation processes, PSO simplifies this by updating 
velocities, which directly translates into movements in 
the game environment. 

 
       3.2 Comparison Between Rule-Based Systems and 

PSO for NPC Behavior 
 
       While traditional rule-based systems provide 

deterministic behaviors for NPCs, they struggle to adapt 
in real-time to complex and dynamic environments. PSO 
offers a significant improvement in adaptability. For 
example, in maze navigation (like Pac-Man), rule-based 
NPCs often follow predefined paths. However, these 
paths are easily predictable and offer little variation when 
game parameters change. 

 
    PSO, on the other hand, allows dynamic adjustments 
to an NPC's path based on real-time game information. 
The algorithm balances exploration (discovering new 
paths) and exploitation (improving known paths), 
resulting in more sophisticated behavior. Through swarm 
intelligence, NPCs can react more naturally to changing 
game states, such as the proximity of a ghost or the 
discovery of a high-value pellet cluster. 

    The system's ability to adapt provides a richer and 
more unpredictable gaming experience. 
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3.3 PSO Implementation in a Dynamic Game 
Environment 

 
       The performance of PSO in real-time environments 

depends heavily on the algorithm's parameters. In our 
experiments, we tested different swarm sizes (from 20 to 
50 particles), and the results showed that larger swarms 
allowed for more exploration, while smaller swarms 
facilitated more precise movements in confined spaces. 
The effect of swarm size on exploration and convergence 
is illustrated in Figure 1. 

          The inertia weight also plays a critical role in balancing 
exploration and exploitation. A higher inertia weight 
encourages broader exploration, which is ideal for the 
early game when Pac-Man needs to gather pellets. As the 
game progresses, a lower inertia weight encourages more 
localized, efficient movements to evade ghosts. 

 

	

Figure	1:	Impact	of	Swarm	Size	on	PSO	Performance	
Over	Iterations.	

    In Figure 1, shows how larger swarm sizes (50 
particles) lead to broader exploration but slower 
convergence, while smaller swarm sizes (20 particles) 
result in more precise, localized adjustments and faster 
convergence in confined game areas. 

          In Pac-Man, each particle represents a sequence of 
moves (up, down, left, right) over a set of frames. The 
swarm is initialized randomly, and each particle is 
evaluated based on the fitness function. The following 
steps outline the process: 

 
1. Initialization: Random paths for Pac-Man are 
generated. 

 
 

 
 

2. Evaluation: Each path is evaluated based on its 
ability to balance pellet collection and ghost avoidance. 
 
3. Velocity Update: Based on the best-performing 
paths (both locally and globally), the next potential 
paths are updated by adjusting velocities. 
 
4. Iteration: The process is repeated in real-time, 
constantly updating Pac-Man's path based on the current 
game state until an optimal or near-optimal path is 
identified. 

 

     3.4 Application of PSO in Pac-Man 
 

The objective is to balance pellet collection and ghost 
avoidance. To do this, we define a fitness function for Pac-
Man’s movements: 

 
•     Fitness Function: The fitness function evaluates each 

particle (potential path) based on: 
 

 
Fitness Formula: 

 
Fitness=W1×Pellet_Score−W2×Ghost_Penalty−W3×U
nnecessary_Movement 

 
           Where W1,W2,W3 are weights that can be adjusted 

for balancing the trade-offs between objectives. 
 
 

1. Pellet Collection: The number of pellets collected in a 
defined time period. 
 

2. Ghost Proximity Penalty: A negative value applied if Pac-
Man approaches too close to a ghost. 
 

3. Movement Efficiency: Penalty for redundant or 
unnecessary movements. 

 
 

 
3.5 Multi-Objective PSO for Complex Scenarios 

 
       In advanced game modes, Multi-Objective PSO 

(MOPSO) is applied. This approach simultaneously 
optimizes multiple objectives such as minimizing game 
time, maximizing score, and avoiding ghosts. 
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          The fitness function is extended to account for these 
additional factors, using weighted sums or Pareto 
optimization to ensure the swarm converges on the most 
balanced solutions. 

           For example, the trade-off between game completion 
time and safety becomes more critical at higher levels, 
requiring more sophisticated strategies. 

 
       3.6 Adaptive Inertia for Enhanced Optimization 
 
      To prevent premature convergence, we introduce 

Adaptive Inertia Weight. This weight dynamically 
adjusts the balance between exploration and exploitation 
based on the iteration number. Initially, a higher weight 
encourages exploration, allowing Pac-Man to explore 
new paths. As the swarm converges, the weight 
decreases, focusing more on refining known good paths. 

 
      The formula for adaptive inertia can be expressed as: 
 
         ω(t)=ωmax−((Tωmax−ωmin)/T)×t 
 
       Where ωmax and ωmin are the maximum and minimum 

inertia values, T is the total number of iterations, and t is 
the current iteration. 

 
4 Findings 

 
       The application of Particle Swarm Optimization (PSO) 

in the Pac-Man game has yielded promising results, 
demonstrating the algorithm’s ability to optimize Pac-
Man’s pathfinding, pellet collection, and ghost 
avoidance. In this section, we present the key findings 
from our study and analyze the impact of PSO on the 
overall game performance. 

 
       4.1 Game Optimization Through PSO 

 
       The primary objective of implementing PSO was to 

optimize Pac-Man’s movement in the maze. The PSO 
algorithm allowed Pac-Man to make better decisions in 
real-time, minimizing unnecessary movements and 
avoiding ghost encounters. Figure 2 provides a 
comparative analysis of Pac-Man’s performance using 
the PSO-based NPC versus the traditional rule-based 
NPC. 

 

 

      Figure	2:	Comparison	of	Pac-Man's	Performance:	
PSO-Based	NPC	vs.	Traditional	Rule-Based	NPC.	

	
 
          The chart compares average scores, time efficiency in 

collecting pellets, and ghost avoidance between PSO-
optimized Pac-Man and the traditional NPC behavior, 
highlighting significant improvements in performance 
due to the PSO algorithm. 

 
4.2 Convergence of PSO 

 
      As PSO iterates, it converges towards an optimal solution. 

The algorithm rapidly adjusts Pac-Man’s path in the early 
stages, with more refined adjustments occurring in later 
iterations. This behavior is characteristic of PSO, where 
exploration dominates initially, followed by local 
refinement. Figure 3 shows the convergence trend of the 
PSO algorithm during the optimization process. 

 

	

Figure	3:	Convergence	of	the	PSO	algorithm	
showing	the	optimization	of	Pac-Man’s	path	over	

time.	
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      4.3 Performance Improvement of Pac-Man NPC 
Using PSO 

 
      The results of our experiments demonstrated that the 

PSO-optimized Pac-Man significantly outperformed 
traditional rule-based NPCs in several key metrics. Over 
100 trials, Pac-Man controlled by the PSO algorithm 
achieved an average score of 12,000, compared to 8,500 
for the rule-based system. The PSO-controlled Pac-Man 
was able to complete mazes 25% faster on average, and 
ghost encounters were reduced by 30%. This marked 
improvement can be attributed to the dynamic 
adaptability of PSO, which allowed Pac-Man to adjust its 
movement strategy in real-time based on proximity to 
ghosts and pellet locations. 

          Furthermore, the PSO algorithm excelled in adapting 
to higher difficulty levels where traditional methods 
became overwhelmed. As the game speed increased and 
ghost behavior became more unpredictable, the PSO-
based approach allowed Pac-Man to survive longer by 
prioritizing evasive maneuvers and avoiding risky 
situations. Traditional rule-based NPCs, on the other 
hand, became predictable and often fell into ghost traps. 
The ability of PSO to continuously update and refine Pac-
Man’s path based on real-time game data is a key 
advantage that highlights the potential of metaheuristic 
algorithms in complex gaming environments. 

          In terms of convergence, the PSO-based approach 
demonstrated robust performance, converging on optimal 
paths within fewer iterations compared to initial tests 
with larger swarms. This reduction in computational 
time, without sacrificing decision quality, shows the 
efficacy of tuning the swarm size and inertia weight 
parameters to strike a balance between exploration and 
exploitation. 

 
	

4.4 Optimized Pathfinding in Pac-Man 
 

  The PSO algorithm enabled Pac-Man to find more 
efficient paths through the maze, reducing unnecessary 
movements and maximizing pellet collection. Figure 4 
demonstrates the difference between Pac-Man’s initial, 
unoptimized path and the final optimized path after 
applying PSO. 

 
 

 
 

Figure	4:	Comparison	of	Pac-Man’s	initial	
unoptimized	path	and	optimized	path	using	PSO.	

	
	

 
4.5 Impact of Adaptive Inertia on Optimization 

 
      Incorporating an adaptive inertia mechanism into the PSO 

algorithm led to faster convergence and improved 
performance. By dynamically adjusting the balance 
between exploration and exploitation, the adaptive inertia 
mechanism prevented the particles from getting trapped 
in local minima. This enhancement allowed Pac-Man to 
explore a wider range of solutions while still converging 
on an optimal path. The adaptive inertia weight improved 
both the speed and accuracy of the optimization, as seen 
in the reduced number of ghost encounters and increased 
pellet collection rates. 

 
5 Discussion 

 
       In this research, we explored the application of artificial 

intelligence and metaheuristic algorithms within the 
context of video games. The study focused on how these 
advanced techniques can optimize decision-making 
processes, enhance non-player character (NPC) 
behaviors, and improve overall game mechanics. 
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           By implementing a hybrid model that integrates both 
metaheuristic and AI-driven approaches, the system 
demonstrated promising results in terms of adaptability 
and strategic complexity, which significantly enriched 
the gaming experience. 

          The proposed methodology successfully addresses 
several key challenges in AI for video games, such as 
dynamic decision-making and performance optimization 
in real-time environments. The results indicate that this 
approach can efficiently handle complex, multi-objective 
problems inherent to gaming scenarios, offering real-time 
improvements in NPC behavior and interaction within 
unpredictable environments. 

 
       Observations 

 
1. Improvement in NPC Intelligence: Our findings show 

a marked improvement in NPCs’ decision-making 
abilities. This enhancement was particularly evident 
when facing unpredictable player actions, where the 
AI’s ability to adapt in real-time resulted in a more 
engaging and competitive gameplay experience. 
 

2. Performance Optimization: By employing 
metaheuristic algorithms like Particle Swarm 
Optimization (PSO) and Genetic Algorithms (GA), 
the system achieved a higher level of resource 
optimization. This translated to smoother 
performance, even in complex and resource-intensive 
game environments. 

 
3. Balancing Realism and Playability: One of the most 

critical aspects of AI in gaming is finding the balance 
between making the game too challenging and 
ensuring it remains enjoyable. Our system effectively 
maintained this balance by introducing adaptive 
difficulty mechanisms that scale NPC behavior based 
on the player's skill level. 

 
4. Versatility Across Game Genres: The methodology 

we developed proved to be flexible enough to be 
applied across various game genres, from strategy-
based games to action and role-playing games, further 
highlighting the general applicability of our approach. 

 
 Suggestions for Future Research 

 
       Exploration of Deep Learning Techniques: Future work 

could focus on incorporating deep learning techniques, 
such as reinforcement learning, to further improve the 
decision-making capabilities of NPCs. This could enable 
more complex and human-like interactions, making the 
gaming experience even more immersive. 

 
           Enhancing Multiplayer AI Systems: While this study 

primarily focused on single-player interactions, applying 

the same AI-driven methodologies to multiplayer games 
could open up new avenues of research, particularly in 
creating more intelligent and competitive AI teammates 
or opponents. 

 
           Cloud-Based AI Processing: To further optimize 

performance, especially in large-scale gaming 
environments, cloud-based AI processing could be 
integrated to offload the computational demand from 
local systems and allow for more complex real-time 
decision-making without performance trade-offs. 

 
Limitations and Future Work 
 
1. Computational Overhead: While metaheuristic 

algorithms offer optimization benefits, they also 
introduce a computational overhead, especially in 
real-time gaming environments. Future research 
could look into more lightweight algorithmic 
implementations to reduce this overhead. 
 

2.   Scalability Concerns: As game environments grow in 
complexity, the scalability of the AI and 
metaheuristic algorithms might become a challenge. 
Investigating more scalable solutions, possibly 
through distributed computing or parallel processing, 
would be a valuable addition to this field. 

 
3.   Real-World Testing: Although the methodology has 

shown promise in controlled environments, further 
testing in commercial game development 
environments is necessary to fully validate its 
practical applicability and performance. 
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