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Abstract

Researchers have long regarded model accuracy as a
tool for evaluating the performance of classification al-
gorithms. The current evaluation approach, which relies
solely on model accuracy, often leads to inappropriate
evaluation of classifiers, regardless of the dataset’s sep-
arability and complexity. This limitation underscores
the need for a new, more comprehensive method. We
claim that evaluation based on accuracy can be mislead-
ing, even if data separability or other complexity mea-
sure(s) are considered. We compare the performance of
well-known classifiers on datasets generated from Gaus-
sian models. We show that most algorithms’ accuracy is
greater than that of the best theoretical method, leading
to overestimation. We label a model as invalid when its
error dominates Bayes error. We introduce a procedure
for finding invalid models and propose an algorithm for
model validation based on the Bayes error rate.

Keywords: Classification, Evaluation, Validation,
Golden Accuracy, Discriminant Analysis and Complex-
ity Measure

1 Introduction

How do we evaluate and compare classification models?
Researchers typically approach this question by compar-
ing the accuracy of different algorithms [12]. The classi-
fiers’ predictive accuracy reflects the performance of the
algorithms; however, a fair evaluation also requires con-
sideration of the complexity of the classification task.

As an operator, a classifier takes a vector of variables
(features) and produces an output decision that deter-
mines its label. The efficiency of algorithms in solving
classification problems is defined by their error rates.
Moreover, the performance of a classifier is influenced
by both the efficiency of the algorithms and the com-
plexity (or separability) of the datasets. [7].

The concept of complexity in classification problems
was introduced in Ho and Basu’s work while analyz-
ing the difficulties of classification problems [8]. They
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proposed a measure to describe the complexity of bi-
nary classification problems based on the geometrical
complexity of the class boundary. They categorized
proposed measures into three main groups: measures
of overlap of features, class separability, and density
(topology and geometry) measure. After that, the com-
plexity measure is redefined into six characterized mea-
sures: feature-based, linearity, neighborhood, network,
dimensionality, and class imbalance [10].

Most researchers ignore the complexity measures to
simplify the evaluation process and focus only on some
items according to the confusion matrix [1]. The four
main criteria often used in evaluation are accuracy,
sensitivity, precision, and specificity; however, others
may also be used [2]. Several libraries and packages
have been developed in some programming languages
to compute these measures. One of developed packages
for model evaluation is HungaBunga [14]. This pack-
age employs a brute-force approach to rank all scikit-
learn models by accuracy, tuning all possible hyper-
parameters in the process.

Some researchers contend that this evaluation ap-
proach can lead to inappropriate decisions if the sepa-
ration characteristics of the data are ignored [17]. They
highlight this concern with a paradoxical example where
a classifier achieves the highest accuracy on one dataset
but performs poorly on another. They argue that mea-
sures of complexity, such as separability, are intrinsic
characteristics of a dataset [5]. Consequently, they cat-
egorized classification tasks by the complexity of each
dataset and proposed instance-oriented measures for
evaluation [18]. However, the computational complex-
ity involved in assessing classification difficulty limits its
applicability to only a few datasets.

In this work, we argue that relying solely on the ac-
curacy criterion can be misleading for evaluating algo-
rithms, even when data complexity measures are consid-
ered. We deem a model invalid if its error rate surpasses
the Bayes Error Rate (BER) or if its accuracy exceeds
the Golden Standard Accuracy (GSA = 1 - BER). We
propose an algorithm for model validation that utilizes
BER to assess the effectiveness and reliability of classi-
fication models.

This paper is divided into the following sections. We
address BER in Section 2. Misleading in evaluation of
classifiers is expressed in Section 3. An algorithm for
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model validation is proposed in Section 4. The work is
concluded in Section 5.

2 Bayes Error Rate

The performance of the best classifier is defined as GSA.
The evaluation is valid when the error of the classifiers
is greater than BER; however, it may also be less than
BER, which is undesirable. We recall that Bayes clas-
sifier error equals BER and can be calculated in the
Gaussian case.

2.1 Bayes Classifier

A classification task includes X = (X1, . . . ,Xd)ᵀ as a
feature vector on a d-dimensional space X = Rd, which
is labeled over binary random variable Y [15]. A bi-
nary classification classifier is a function h : X → Y ∈
Y = {0, 1}. Classification error (CE) occurs when an
observation of X, i.e., x, is not correctly assigned to its
true class CEh = Pr(h(X) 6= Y ) [9]. According to the
Bayes’ theorem, we recall the following formula:

Pr(Y = y |X = x) =
Pr(Y = y)fX|Y (x | y)

fX(x)
, (1)

where fX|Y (x|y) is the class-conditional distributions
Pr(Y = 0) = π0 and Pr(Y = 1) = π1 = 1− π0 are prior
label probabilities and we have

Pr(Y = 0 | x) > Pr(Y = 1 | x)
m

π0f (x | y = 0) > π1f (x | y = 1) ,
(2)

[4]. Based on the logical classification strategy, we as-
sign an observation x to the first class with a greater
posterior probability [16], and using (1) and (2), Bayes
classifier hB is defined as follows

hB =

{
0 π0fX|Y (x | y = 0) ≥ π1fX|Y (x | y = 1)
1 otherwise

.

(3)

Lemma 1 The Bayes classifier (3) is optimal [16].

In Lemma 1, if h is any other classification rule, then
CEhB

≤ CEh.

2.2 Discriminant Function

According to (1), the discriminant function is defined as

dy(x) = log fX|Y (x | y) + log Pr(Y = y), (4)

and quadratic discriminant g is defined by

g(x) = xᵀAx+ aᵀx+ c, (5)

where A is a d× d matrix, a is a column vector with
length d, and c is a constant [3].

Gaussian Classifiers. Let the conditional density
of classes be Gaussian as follows

fX|Y (x | y) =
1

(2π)
d
2 |Σy|

1
2

exp
(
−1

2
(x− µy)ᵀΣ−1

y (x−µy)
)
,

(6)

where Σy and µy are the covariance matrix and mean
vector, respectively. By replacing (6) in (4) and simpli-
fying, we have

dy(x) =− 1

2

(
x− µy

)ᵀ
Σ−1y

(
x− µy

)
− 1

2
log |Σy|+ log Pr(Y = y),

[11]. Suppose that the parameters of Gaussian distribu-
tions in (6) are known. Using (5) the Bayes classifier in
(3) is reduced to

gB (x) = xᵀAB x+ aᵀ
B x+ cB , (7)

where

AB = −1

2

(
Σ−11 −Σ−10

)
, aB = Σ−11 µ1 −Σ−10 µ0,

and

cB =− 1

2

(
µT

1 Σ−11 µ1 − µT
0 Σ−10 µ0

)
+

1

2
log

(
|Σ0|
|Σ1|

)
+ log

(
1− π0
π0

)
,

[6]. Discriminant function (7) is known as quadratic
discriminant analysis (QDA).

Lemma 2 Let data has multivariate Gaussian distri-
bution with known parameters. The error of QDA in
(7) equals BER for Gaussian models.

Proof. From Lemma 1, we have Pr(hB(X) 6= Y ) =
BER, and the proof is complete. �

Example 1 (Bivariate Gaussian). Assume the class
density function (6) has the following parameters:

µ0 =

[
−0.2
−0.2

]
,µ1 =

[
0.2
0.2

]
,Σ0 = Σ1 =

[
1 0.7

0.7 1

]
.

Consider π0 = π1 and the region R as follows

R = {x|π0fX|Y (x | y = 0) ≥ πfX|Y (x | y = 1)},

then

BER = Pr(hB(X) 6= Y )

=

∫
R

π0fX|Y (x | y = 0) dx

+

∫
Rc

π1fX|Y (x | y = 1) dx

= 0.414131
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Example 2. We shifted the location parameters in
Example 1 are as follows

µ0 =

[
−1
−1

]
and µ1 =

[
1
1

]
,

and so BER is reduced to 0.139038.
Classifier (7) attains the BER. It is defined as BTM

classifying data generated from the Gaussian model. In
general, when class distribution is Gaussian with known
parameters, the QDA error equals to BER (Lemma 2).

3 Misleading of Classifiers Evaluation

An evaluation is not misleading when the accuracy of
classifiers is less than the accuracy of BTM. To show the
misleading of classifiers evaluation, we generate datasets
from the Gaussian model in Example 1 with the same
complexity (density, separability and balanced weights).
Figure 1 visualizes the contour and scatter plot of the
model and a data sample.
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Figure 1: The Left graphs show contour plots of bivariate Gaus-

sian distributions and the right graph is a scatter plot of generated

data in Example 1.

To analyze the performance of the classifiers, we con-
sider QDA, k-Nearest Neighbors (kNN), Logistic Re-
gression (LR), Support Vector Machine (SVC), Gaus-
sian Naive Bayes (GNB), Linear classifiers with Stochas-
tic Gradient Descent (SGD) training, Decision Tree
(DT), Random Forest (RF), Gradient Boosting (GB),
Ada Boost (AB), Multi-layer Perceptron (MLP), algo-
rithms from Scikit-learn [13] and parameters were taken
as defaults. Accuracy for the classification tasks is com-
puted using 10-fold Cross-Validation. A classifier from
among these 11 algorithms that demonstrates the min-
imum error on a dataset is designated as the Best Em-
pirical Method (BEM).

In Figure 2, we compare the efficiency of classification
algorithms with BTM represented by a solid blue line
and BER depicted by a blue dashed line. As the sample
size increases, the error rate of BEM, indicated by the
red line, tends to converge towards the BTM. In most
cases, the error of BEM is lower than both BTM and
BER. However, these scenarios lead to potentially mis-
leading evaluations of classifier performance. A classifier

is often selected as superior because its error is the least.
If the error be less than BER, this outcome is theoret-
ically impossible. This discrepancy suggests a misjudg-
ment in assessing classifier efficiency and necessitates a
careful review of evaluation metrics and methodologies.
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Figure 2: Comparison of classification errors: BEM error is

depicted by a red line with solid circles, BER by a blue dashed

line, and BTM error by a blue line with inverted triangles. Data

samples were generated from Example 1 using different seeds but

maintained consistent complexity. Errors falling below the BER

line are paradoxical. Instances where BEM error is less than BTM

error can lead to misleading and wrong decision.
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Figure 3: Comparison of classification errors: BEM error is

depicted by a red line with solid circles, BER by a blue dashed

line, and BTM error by a blue line with inverted triangles. Data

samples were generated from Example 2 using different seeds but

maintained consistent complexity. Errors falling below the BER

line are paradoxical. Instances where BEM error is less than BTM

error can lead to misleading and wrong decision.

Focusing on Figure 4 (top left graph, N = 300), a
detail of the top left graph in Figure 2, one can see that
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Figure 4: Performance of classifiers based on different samples

from the top left graph in Figure 2. BTM and BEM errors are

depicted in blue and red, respectively. A blue dashed line repre-

sents the BER. The models with the error under the BER line are

paradoxical. Classifiers whose error is less than BTM are where

we go wrong.

MLP algorithm error is BEM and less than BTM error
that leads to decision-making errors. Top right graph
(N = 500), SVC algorithm error is BEM and less than
BER, which means that, at the same time, we make a
mistake in making a decision (misleading) and have an
invalid model. The results are summarized in Table 1.
According to the top left graph in Figure 2, Figure 4,
and BER criterion with the same data complexity, we
have misleading in any sample sizes. However, by in-
creasing sample size, BEM error tends to BTM error.

We summarize the results of Figure 3 in Table 2, in
which BER equals 0.139038. In samples greater than
300, all algorithms are valid (The accuracy of classifiers
is not less than BER); however, we are misled in evalu-
ating all datasets except 500 and 10000.

Table 1: The summary of the graph results is shown in
Figure 4. The misleading cases and invalid models for
each dataset are in red.

Sample Size Best Empirical
Method

Underestimate
w.r.t. BER

Valid Underestimate w.r.t.
Best Theoretical Method

Misleading

300 MLP Yes No Yes Yes
500 SVC Yes No Yes Yes
800 SVC Yes No Yes Yes
1200 LR Yes No Yes Yes
2400 LR No Yes Yes Yes
4000 GNB Yes No Yes Yes
7000 LR Yes No Yes Yes
10000 LR Yes No Yes Yes

Table 2: Results summary of the left graph of Figure 3.
The misleading cases and invalid models are in red for
each dataset.

Sample Size Best Empirical
Method

Underestimate
w.r.t. BER

Valid Underestimate w.r.t.
Best Theoretical Method

Misleading

300 MLP Yes No Yes Yes
500 QDA No Yes No No
800 LR No Yes Yes Yes
1200 SVC No Yes Yes Yes
2400 LR No Yes Yes Yes
4000 SVC No Yes Yes Yes
7000 MLP No Yes Yes Yes
10000 QDA No Yes No No

4 Model Validation

The validity of the models is determined by comparing
them with BER. Models with errors less than BER are
considered invalid. The estimated BER ( ˆBER) equals 0
for the Iris dataset so that all algorithms will be valid.
The validation process is done through Algorithm 1.

Algorithm 1 Model Validation

1: Compute ˆBER using, e.g., bayeserror.com for a given
dataset
2: Compute the accuracy of the candidate classifier
3: If accuracy in step 2 is less than ˆBER, the classification
is invalid.
4: Repeat step 2 to find a list of valid models.
5: Select a classifier with maximum accuracy in step 4.

5 Discussion

In this note, we show that by considering the same com-
plexity measures on datasets, the accuracy criterion de-
rived from the confusion matrix for evaluating classi-
fiers is misleading. In small samples, the evaluation of
models leads to overestimation. The misleadingness of
this approach in large samples still exists; however, the
strength is that the error of BEM tends to the error
of the optimal classifier (BTM). Another unacceptable
fact is that the accuracy of the classification algorithms
is paradoxically less than BER, which is theoretically
impossible and leads to invalid evaluation. To solve this
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problem, it is necessary to compare the error of algo-
rithms with BER. However, it is impossible to calcu-
late or compute this value in most cases with dimen-
sions higher than 10. Fortunately, bayeserror.com has
recently developed methods to calculate it. Therefore,
it is suggested that the evaluation and validation of clas-
sification algorithms in this approach is considered.
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