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Abstract

With the growth of textual data across online plat-
forms, sentiment analysis has become crucial for ex-
tracting insights from user-generated content. While
traditional approaches and deep learning models have
shown promise, they cannot often capture complex re-
lationships between entities. In this paper, we pro-
pose leveraging Relational Graph Convolutional Net-
works (RGCNs) for sentiment analysis, which offer in-
terpretability and flexibility by capturing dependencies
between data points represented as nodes in a graph.
We demonstrate the effectiveness of our approach by
using pre-trained language models such as BERT and
RoBERTa with RGCN architecture on product reviews
from Amazon and Digikala datasets and evaluating the
results. Our experiments highlight the effectiveness of
RGCNs in capturing relational information for senti-
ment analysis tasks.
Keywords: Relational Graph Convolutional Networks,
Sentiment analysis, Pretrained Language Models,
BERT, Amazon, Digikala

1 Introduction

Sentiment analysis, also known as opinion mining, is a
fundamental task in natural language processing within
the broader domain of text classification which aims to
extract valuable insights from various social platforms
and extensive online texts, enabling the analysis of peo-
ple’s attitudes across various domains including busi-
ness, advertising, government, economics, and even po-
litical orientations. As the utilization of text in online
conversations, emails, and user-generated sentiments on
the internet about various products, movies, and ser-
vices continues to rise, there emerges a pressing need
for robust mechanisms capable of analyzing and inter-
preting textual data. Text classification involves cate-
gorizing text documents into predefined classes or cate-
gories based on their content. In the case of sentiment
analysis, the objective is to classify text documents into
categories representing different sentiments or emotions,
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such as positive, negative, or neutral. Researchers have
made many efforts in this field, which mainly refer to
traditional approaches based on dictionaries, machine
learning, and deep learning models. Despite achieving
impressive results in sentiment analysis, deep learning
models can be unexplainable. This ”black box” nature
arises from difficulties in interpreting the model’s inter-
nal workings, such as the weights assigned to features
and the high dimensionality of the feature space itself.

Graph Neural Networks (GNNs) have emerged as a
powerful paradigm for analyzing structured data, offer-
ing unique advantages in capturing relationships and
dependencies between data points represented as nodes
in a graph. GNNs excel at exploiting the rich relational
information inherent in graph structures. Unlike tradi-
tional Graph neural networks, which usually treat all
connections the same, Relational Graph convolutional
networks consider the different types of relationships in
the graph. This allows them to better understand and
analyze interconnected data.

Heterogeneous graphs, where nodes and edges can
have different types, offer a natural representation of
real-world systems with diverse relationships. While
successful for text classification, traditional GCNs treat
all relationships in text graphs as homogeneous. By
treating all relationships the same, traditional GCNs
miss out on the rich information encoded in the different
types of edges within a text graph, meaning they over-
look the inherent variety in how words interact. Rela-
tional Graph Convolutional Networks (RGCNs) address
this by using different types of edges to capture differ-
ent relationships. However, this expressiveness comes
at a computational cost. Nevertheless, heterogeneous
graphs provide a more powerful way to represent text,
allowing GNNs to adapt their message-passing based on
the semantics of different relationships. This richer rep-
resentation often leads to improved performance in text
classification tasks.

In this paper, we propose leveraging the ability of
Relational Graph Convolutional Networks (RGCNs) to
understand relational information for sentiment analy-
sis tasks. By incorporating pre-trained language models
such as BERT and RoBERTa into the RGCN frame-
work, we aim to enhance the model’s ability to ex-
tract meaningful sentiment-related features from doc-
uments. To demonstrate the effectiveness of our ap-
proach, we conduct experiments on two diverse datasets:
the English-language Amazon reviews dataset and the
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Persian-language Digikala reviews dataset. Through
comparison with existing methods, we showcase the
superior performance of our RGCN-based approach in
capturing relational information. The remainder of this
paper is organized as follows. Section 2 provides a
brief overview of related work in sentiment analysis and
GCNs. Section 3 details our proposed method, includ-
ing the RGCN architecture and training process. Sec-
tion 4 presents the experimental setup and evaluation
results. Finally, Section 5 concludes the paper and out-
lines potential future directions. Codes are available
here.1

2 Related Work

In recent years, there has been significant research in-
terest in leveraging graph-based models for text classifi-
cation tasks, aiming to capture the relational dependen-
cies and semantic associations present in textual data.
Unlike some applications with explicit graph structures
including constituency2 or dependency3 graphs [16],
knowledge graphs [11, 12], social networks [3] without
constructing graph structure and defining correspond-
ing nodes and edges, text-specific graphs are implicit,
which means we need to define a new graph structure for
a specific task such as designing a word-word or word-
document co-occurrence graph.

Two main approaches based on graph construction
are corpus-level graphs and document-level graphs.
Corpus-level graph methods encompass the entire col-
lection of text documents, uncovering patterns in word
usage across the whole dataset. On the other hand,
in document-level graphs, the focus is on the internal
structure of a single document, capturing how concepts
and ideas connect within that specific text.

One notable approach in this domain was Text-
GCN [22], which built a corpus-level graph with training
document nodes, test document nodes, and word nodes
to capture semantic relationships between words and
documents. A two-layer GCN was applied to the graph,
and the dimension of the second layer output equals
the number of classes in the dataset. TextGCN was
the first work that treated a text classification task as
a node classification problem by constructing a corpus-
level graph and has inspired many following works.

Wu et al. (2019) [20] proposed Simple Graph Con-
volution (SGC) to address the computational complex-
ity of Graph Convolutional Networks (GCNs). They
achieved this by removing the non-linear activation
function within GCN layers, resulting in a single linear

1https://github.com/agmlabaut/
Relational-Graph-Convolutional-Networks-RGCN-/

2The constituency graph is a widely used static graph that can
capture phrase-based syntactic relations in a sentence.

3A dependency graph is a directed graph representing depen-
dencies of several objects towards each other.

transformation with comparable or even better perfor-
mance on various tasks. Zhu and Koniusz (2020) [24]
proposed Simple Spectral Graph Convolution (S2GC)
which included self-loops using Markov Diffusion Ker-
nel to solve the oversmoothing issues in GCN. Other
than using the sum of each GCN layer in S2GC,
the NMGC model which was proposed by Lei et al.
(2021) [7] applied min pooling using the Multi-hop
neighbor Information Fusion (MIF) operator to address
over-smoothing problems. Zhang and Zhang (2020) [23]
introduced TG-Transformer (Text Graph Transformer)
which adopted two sets of weights for document nodes
and word nodes respectively to introduce heterogeneity
into the TextGCN graph. Lin et al. (2022) [8] pro-
posed BertGCN, which aimed to combine the strengths
of BERT (Devlin et al., 2018) [4] and TextGCN. Bert-
GCN replaced the document node initialization with the
BERT’s ”CLS” output obtained in each epoch and re-
placed the word input vector with zeros. Instead of con-
structing a single corpus-level graph, TensorGCN which
was proposed by Liu et al. [9] built three independent
graphs: Semantic-based graph, Syntactic-based graph,
and Sequential-based graph to incorporate semantic,
syntactic, and sequential information respectively and
combined them into a tensor graph. To fully utilize the
corpus information and analyze rich relational informa-
tion of the graph, Wang et al. (2022) [17] proposed ME-
GCN (Multi-dimensional Edge-Embedded GCN) and
built a graph with multi-dimensional word-word, word-
document and document-document edges.

Various works have been done to make TextGCN In-
ductive. Ragesh et al. (2021) [13] optimized TextGCN
with HeteGCN (Heterogeneous GCN) by decompos-
ing the original undirected graph into several directed
subgraphs. Wang et al. (2022) [18] aimed to ex-
tend the transductive TextGCN into an inductive model
with InducT-GCN (Inductive Text GCN). Xie et al.
(2021) [21] adopted a Variational Graph Auto-Encoder
on the latent topic of each document with T-VGAE
(Topic Variational Graph Auto-Encoder) to enable in-
ductive learning.

Schlichtkrull et al. (2017) [15] introduced a powerful
approach called Relational Graph Convolutional Net-
works (R-GCNs) for modeling relational data. Their
model effectively learns representations for nodes in a
graph by considering not only the node features them-
selves but also the relationships between nodes. In this
work, we leverage this concept by employing R-GCNs
to use it on sentiment analysis.

BERT [4], a powerful NLP model by Google, cre-
ated word representations in sentences. This BERT
vector captured a word’s meaning within its context.
Trained on massive datasets like English Wikipedia,
BERT assigned a unique code to each word. To ensure
consistent input lengths for neural networks, sentences
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were padded with zeros after a fixed length was defined.
RoBERTa [10], a more robust Bert, building on BERT’s
architecture, improved its performance through various
refinements. Notably, RoBERTa utilized longer pre-
training with bigger batches and removed unnecessary
pre-training tasks. ParsBERT [5] was a transformer-
based pre-trained language model, similar to BERT,
that has been specifically trained on a large corpus of
formal and informal Persian text data (over 3.9 mil-
lion documents) for Persian Natural Language Process-
ing (NLP) tasks. ParsBERT was trained on a large
corpus of Persian text collected from Persian-language
websites. This pre-training process allowed ParsBERT
to learn the text representation vectors of words in Per-
sian text, which can then be fine-tuned for a wide range
of NLP tasks such as text classification, named entity
recognition, and question answering in Persian.

3 Proposed Method

In this section, we propose our method for sentiment
analysis which is to construct the heterogeneous graph,
calculate the feature vectors of the nodes using the pre-
trained BERT and Roberta models, and then feed them
into the Relational graph neural network and predict
the node labels. We initialize node embeddings with
pre-trained BERT representations and utilize RGCNs
for node classification. By using the BERT models, our
model benefits from capitalizing on pre-trained BERT,
which leverages vast amounts of unlabeled data to cap-
ture rich semantic information for text elements. Figure
1 shows the overview of our proposed method.

Figure 1: Overview of the proposed method

3.1 Text Pre-processing

Our proposed method incorporates text pre-processing
to prepare the text data for graph construction. This
pre-processing includes text normalization (lower cas-
ing, removing punctuation and spell checking), remov-
ing numbers and extraneous content (URLs, HTML
tags), using chat word conversion, and simplifying the
text by removing emojis and low-frequency words. Ad-
ditionally, we handle abbreviations and remove stop
words and rare words to focus on the core meaning.
Finally, we tokenize the text and perform lemmatiza-
tion to ensure consistent word representation. Specifi-
cally, for the dataset in Persian, we used normalization,
punctuation removal, unnecessary word removal, tok-
enization, number removal, and lemmatization.

3.2 Graph Construction

3.2.1 Heterogeneous graph

A heterogeneous graph is a more flexible way to repre-
sent networks where data can come in various forms [19].
Unlike a homogeneous graph, a heterogeneous graph al-
lows for different types of nodes and edges. Imagine a
social media network where you can have users, posts,
and comments. A standard graph would just represent
them as nodes and connections between them. But a
heterogeneous graph can differentiate between a user
node and a post node, and also distinguish between a
”likes” edge and a ”comments on” edge. Formally, a
heterogeneous graph is denoted by G = (V,E, τ, ϕ),
where V is the set of nodes, and the type of node
for node v is denoted as τ(v). The set of edges is
E, and the type of edge for edge (u, v) is denoted by
ϕ(u, v). Additionally, we can also use an ordered triple
r(u, v) = (τ(u), ϕ(u, v), τ(v)) to represent relationships
in a heterogeneous graph. Here, the aim is to construct
a directed and weighted heterogeneous graph that con-
tains a good representation of the relationships between
the nodes in the dataset.

3.2.2 Creating edges

The edges between the nodes are created based on the
occurrence of a word in the document, the co-occurrence
of words in the entire corpus, and the similarity between
two documents. Therefore, in our heterogeneous graph,
we have three types of edges: word-word edges, word-
document edges, and document-document edges. For
each of these edge types, we need to define a weighting
metric that captures the strength or importance of the
relationship between the connected entities.

• For calculating the weight of the link between word-
word nodes, we use the point-wise mutual informa-
tion (PMI) method [1], which is a popular metric
for calculating the weight between two-word nodes.
To calculate the weight of the link between two
words i and j, PMI is defined in the formula 1.

PMI(i.j) = log(
p(i.j)

p(i)p(j)
) (1)

P (i.j) =
#W (i.j)

#W
(2)

P (i) =
#W (i)

#W
(3)

In formula 3, the number of sliding windows in the
entire dataset that contain the word i is denoted by
#W (i). Also in formula 2, #W (i, j) is the number
of sliding windows that contain word i and word
j. The #W is the total number of sliding windows
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in the entire dataset. Positive PMI values indicate
a high semantic relationship between words in the
dataset, while negative PMI indicates the absence
of a semantic relationship or a weak semantic rela-
tionship between two words, therefore, we only add
edges with positive PMIs to the graph. The edges
are connected in a bidirectional manner here.

• For document-document nodes, we use the Jac-
card [6] weighting metric which is used to calcu-
late the similarity between two documents A and
B, and is obtained using formula 4:

J =
|A ∩B|
|A ∪B|

=
|A ∩B|

(|A|+ |B| − |A ∩B|)
(4)

If the two sets are completely equal, then J = 1, if
they have no common elements, then J = 0; if they
have some common elements, then 0 ≤ J(A,B) ≤
1. Also, the edges are bidirectional here.

• For word-document edges we use the Term
Frequency-Inverse Document Frequency (TF-
IDF) [14] weighting metric. To obtain the TF-IDF
score, we need to calculate each of these two terms
separately and multiply the results together. The
resulting score will show us the weighted frequency
of the keyword. The formula is given in 5:

TF − IDF = tfx,y ∗ IDF = tfx,y ∗ log(
N

dfx
) (5)

The N is the total number of words in the content,
tfx,y is the number of times the word x appears in
the document y divided by the number of words
in the document y, dfx is the number of documents
that contain the word x and IDF is the logarithm of
the number of total content divided by the content
that contains the word x.
To obtain the co-occurrence information of key-
words, we use a sliding window with a fixed size
on all text documents in the dataset to collect co-
occurrence statistics. Additionally, the direction of
edges is from documents to words.

Figure 2 shows an overview of the constructed graph
using the mentioned three metrics.

3.3 Pre-trained language models

This work leverages BERT (RoBERTa) to generate con-
textualized representations for both document and word
nodes. After constructing the graph, we first create
an initial representation vector, using the pre-trained
BERT model and the pre-trained RoBERTa model for
each of the nodes (documents and words) in the graph.

Figure 2: Overview of the constructed graph - The con-
structed graph is a directed and weighted heterogeneous
graph with two types of nodes (words and documents)
and three types of edges ( word-word, word-document,
and document-document )

Then, these representation vectors are fed into the
RGCN as the initial features of the nodes. For each
document, Dd, we process it through the pre-trained
BERT (RoBERTa) model. This can be formulated as
6.

BDd
= BERT/RoBERTa(Dd) (6)

HnodeDd
= B

[cls]
Dd

(7)

HnodeWm
= mind∈DWm

(BWm

Dd
) (8)

For example, we give the sentence “John feels
happy” to BERT (RoBERTa) and the output would be
B

[CLS]
Dd

BJohn
Dd

Bfeels
Dd

Bhappy
Dd

B
[SEP ]
Dd

. Using formula 7, we
consider the representation vector ”[CLS]” as the repre-
sentation vector of the document Dd. This ”[CLS]” to-
ken, a characteristic of BERT and RoBERTa, is known
to encapsulate a comprehensive representation of the
entire input sequence. Consequently, HnodeDd

serves as
the final document node representation for the RGCN.

The formula 8 defines the representation vector for a
word node Wm. We first consider all documents DWm

that contain the word Wm. Subsequently, for each
document Dd in this set, we extract the specific em-
bedding vector BWm

Dd
corresponding to the word Wm

within the document embedding BDd
. Finally, we em-

ploy min-pooling to select the minimum vector across
all documents containing Wm. This min-pooled vec-
tor, HnodeWm

, captures the most prominent contextual
representation of the word across different document
occurrences.
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3.4 RGCN framework

RGCN is a convolution operation that performs mes-
sage passing on multi-relational graphs. The RGCN
method is used to learn the representation vectors of the
nodes in the graph. The difference between the RGCN
method and the GCN method is that the GCN method
operates on graphs with one type of edge, while the
RGCN method operates on graphs with multiple types
of edges and considers a different processing channel for
each type of edge. We explain how graph convolutional
networks operate on directed graphs and how they can
be extended to relational graphs. We describe message
passing in terms of matrix multiplication and explain
the intuition behind this operation. This model is a
generalized version of GCN that operates on graphs in
large-scale multi-relational data. Related methods, such
as graph neural networks, can be understood as special
cases of the message-passing framework.

h
(l+1)
i = σ

( ∑
m∈Mi

gm(h
(l)
i , h

(l)
j )

)
(9)

In formula 9, h
(l)
i ∈ Rd(l) is the hidden state of

node vi at layer l of the neural network, where d(l)

is the dimension of this layer. The received messages
are aggregated using the function gm(·, ·) and passed
through an element-wise activation function σ(·), such
as ReLU(0) = max(0, ·). The Mi denotes the set of
incoming messages for node vi and is often chosen to
be the same as the set of incoming edges. The gm(·, ·)
is typically chosen to be either a neural network func-
tion (message-specific) or simply a linear transformation
gm(hi, hj) = Whj with a weight matrix W . This is es-
sentially a transformation of the message before it is
passed on. This type of transformation is very effective
in aggregating and encoding local features of the graph
structure’s neighbors and has led to significant advances
in areas such as graph classification and graph-based
semi-supervised learning.

Motivated by these architectures, we define the fol-
lowing simple propagation model for computing the
forward-pass update of an entity or node denoted by
vi in a multi-relational (directed and labeled) graph.

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 (10)

In formula 10, Nr
i denotes the index set of node i’s

neighbors under relation r ∈ R. The ci,r is a problem-
specific normalization constant that can be learned or
chosen beforehand (e.g., ci,r = |Nr

i |). Intuitively, the
model aggregates the transformed feature vectors of
neighboring nodes via a normalized summation.

Different from conventional GCNs, in this model,
relation-specific transformations, represented by the re-
lation weight matrix W

(l)
r , are introduced depending on

the type and direction of an edge. As shown in Figure
3, three weight matrices are shown with three different
colors.

Figure 3: Overview of RGCN and its corresponding
computational graph for the example node ”A”.

To ensure that the representation of a node in layer
l+1 can also be aware of the corresponding representa-
tion of the same node in layer l, a self-loop of a special
relation type is added to each node. Note that instead
of simple linear message transformations, more flexible
functions (of course, with computational cost consider-
ations) such as multilayer neural networks can be se-
lected. The formula 10 is a layer update of the neural
network in parallel for each node in the graph. In prac-
tice, the formula can be efficiently implemented using
sparse matrix multiplication to avoid explicit summa-
tion over neighbors. Multiple layers can be stacked on
top of each other to allow for dependencies over mul-
tiple relational steps. This model is referred to as a
Relational Graph Convolutional Network (RGCN).

The computational graph for updating a node in the
RGCN model is shown in figure 4. The d-dimensional
feature vectors of the neighboring nodes (in blue) are
first aggregated and then transformed separately for
each relation type (both for incoming and outgoing
edges). The resulting representation (green) is aggre-
gated in a normalized summation and passed through
an activation function. This update can be computed
for each node in parallel with parameters shared across
the entire graph. The overall RGCN model is thus to
stack l layers as defined in the above formula, with the
output of the previous layer being the input to the next
layer. If no node features exist, the input to the first
layer can be chosen as a one-hot vector for each node in
the graph. A problem with directly applying the above
equation is the rapid growth of the number of parame-
ters, especially for data with a large number of edges. In
order to reduce the number of parameters of the model
and prevent overfitting, the use of basis decomposition
has been proposed. With the basis decomposition, each
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Figure 4: The computation view for updating a single
graph node in the RGCN model

W
(l)
r is defined as formula 11.

W (l)
r =

B∑
b=1

a
(l)
rb V

(l)
b (11)

i.e. as a linear combination of basis transformations
V

(l)
b ∈ Rd(l+1)∗dl with coefficients a(l)rb such that only the

coefficients depend on r.

3.5 Details of our proposed method

3.5.1 Training settings

There are two settings of learning in GNNs: inductive
and transductive [2]. Inductive learning is the same
thing as what we usually know as supervised learning.
We build and train a machine learning model based on
a labeled training dataset that we already have (just
training nodes and not test nodes). Then, we use this
trained model to predict the labels of a test dataset that
we have never seen before [21, 18, 13].

On the other hand, in transductive learning, all data,
both the training and test datasets, are observed in ad-
vance. They learn from the observed training dataset
including only the labels of the train data and then pre-
dict the labels of the test dataset. Even if we do not
know the labels of the test dataset, we can use the pat-
terns and additional information in this data during the
learning process [23, 15].

Our model is trained in a transductive manner be-
cause, according to the transductive logic, it uses the
entire graph structure to obtain embeddings, i.e., the
connections affect message passing. However, training
is done using the labels of the separate sections. The

graph is constructed at the text corpus level, i.e., a
graph is created over the entire text data, and the word
embedding is obtained from the min pooling of the em-
beddings of the documents it contains. Therefore, the
document that has labels is included in all three sec-
tions: training, validation, and testing. And the word
must also exist in order to preserve the complete con-
nections. Finally, the entire graph structure plays a role
in training the model.

3.5.2 The model

Our proposed RGCN network consists of two layers,
which allows information exchange between nodes that
are at most two hops (neighbors and neighbors of neigh-
bors) apart. The activation function is the ReLU func-
tion, and the optimizer function is the ADAM function.
The first layer of the RGCN model is fed with a feature
vector of each node which is acquired from BERT or
RoBERTa. Based on our obtained results, a two-layer
RGCN performs better than a one-layer RGCN, while
increasing the number of layers does not improve the
performance of the model. The size of the representa-
tion vectors of the second layer is the same as the size
of our class set, which is updated with RGCN based on
the graph structure. The final representation vectors
obtained for each of the nodes of the document are con-
sidered as the output of the RGCN, which are passed
through a SoftMax classifier to perform the prediction.

By constructing a large heterogeneous text graph con-
taining word nodes and document nodes, we can explic-
itly model both word co-occurrences and easily apply
graph complexities. The number of nodes in the text
graph is equal to the number of documents (corpus size)
plus the number of distinct words in the set (vocabulary
size).

We define the edge between document and word nodes
as directed (from document to word) and the edge be-
tween two-word nodes or two document nodes as bidi-
rectional. A heterogeneous graph is defined with the
structure (V,E, τ, ϕ) = G, where:

• Node type τ(v) is defined as word or document.

• Edge type ϕ(u, v) is defined as co-occurrence, sim-
ilarity, or frequency.

• The relationship type is expressed as an ordered
triple for R: (Word, Co-occurrence, Word), (doc-
ument, Similarity, document), (document, Fre-
quency, Word)

Since the rule of message passing in a directed graph
is such that messages are only sent in the direction of the
edge, the problem is that for a triple < s.r.o > message
is sent from s to o, but not from o to s. For example, for
the triplet <Amsterdam.Located in. The Netherlands>
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Amsterdam needs to be updated with information from
the Netherlands and the Netherlands needs to be up-
dated with information from Amsterdam, defining dif-
ferent directions has different meanings in modeling. In
order for the model to be able to send messages in both
directions, the graph inside the RGCN layer is corrected
by adding reverse edges, so that for each existing edge
< s.r.o >, a new edge < s.ŕ.o > is added where ŕ is a
new relation that represents inverse of r.

As we know, in the simple implementation of RGCN
or GCN, the output representation for node i does not
preserve any of the input representation information of
each node. To allow such information to be preserved,
a self-loop < s.rs.s > is added to each node.

For each relation in the graph, a sparse adjacency
matrix Ar is formed. Reverse edges are only considered
for bidirectional relations, and the adjacency matrix be-
comes symmetric considering self-loops. Therefore, the
size of the adjacency matrix is determined based on the
number of nodes in the source and destination node
types of the relation. This ensures that the adjacency
matrix has the correct dimensions to represent that par-
ticular relation in the heterogeneous graph. Considering
the above, the update of the embedding of a node in our
designed model is as follows:

h
(l+1)
i = ReLU

∑
r∈R

∑
j∈Nr

i

1

Nr
i

W (l)
r h

(l)
j +W

(l)
0 h

(l)
i


(12)

If we consider formula 12 in matrix form for each
node, we get formulas 13 and 14:

H(k) = [h
(k)
1 ...h

(k)
|V |]

T (13)

H(l+1) = ReLU

(
R∑

r=1

ArH
lW l

r +H lW 1
0

)
(14)

4 Experiments

4.1 Datasets

4.1.1 The Amazon dataset

The dataset used in this research is the Amazon
dataset4, which was collected from the company’s web-
site between May 1996 and July 2014. The Amazon
website sells a wide variety of products from differ-
ent categories, such as electronics, books, clothing, and
more. The website allows users to rate products and
write reviews. All of the information mentioned above
is collected in text files in the Amazon dataset. This
dataset consists of 142.8 million samples. Each sam-
ple in this file represents a user’s review of a product.

4https://jmcauley.ucsd.edu/data/amazon/

Each sample includes information such as the user ID,
the item ID, the user’s rating of the item (a number
between 1 and 5), the user’s review of the item (in text
form), and the time the user submitted the review. In
this paper, we use the core5-version of the user reviews
file (each user or item has at least 5 reviews), on the
grocery shopping category (including food, vegetables,
prepared meals, etc.), which contains 9982 users, 8682
items, and 151,254 ratings and reviews (22 people with-
out text reviews). The specifications of this dataset af-
ter pre-processing are shown in Table 1. We also used
a 2-class version of this dataset. This dataset has two
labels: label 1 (combination of classes 1 and 2 from 5-
core version) and label 2 (combination of classes 4 and
5 from 5-core version)

Figure 5 shows the 5-class and 2-class Amazon
datasets before balancing. It shows that before balanc-
ing the data, in 2-class version, the number of data with
label 2 (combination of classes 4 and 5) is more than the
label 1 (combination of classes 1 and 2). We can say that
label 2 is the majority class and the other class is the mi-
nority class. In addition, in the 5-class version, the class
with label 5 is the majority class and the class with label
1 is the minority class. We increased the data of classes
with labels 1, 2, and 3 to the number of classes with
label 4 with the oversampling method, and we reduced
the data of classes with label 5 to the number of data
of classes with label 4 with the undersampling method.
Therefore, to balance the datasets, we used a combina-
tion of reducing the majority class and increasing the
minority class in both versions. After balancing 5-class
Amazon dataset has 32777 comments in each label and
the 2-class Amazon dataset has 13681.

The problem with a model trained on imbalanced
data is that the model learns that it can achieve high
accuracy even if it does not predict the minority class
accurately. This can be a problem when applying the
model to a real-world problem, where it is more impor-
tant to predict the minority class accurately. Balancing
a dataset makes it easier to train a model, as it helps
to prevent the model from becoming biased towards one
class. In other words, the model will no longer favor the
majority class, just because it has more data.

In Figures 6 (a) and 6 (b), we present the distribu-
tion of the number of words in the 5-class and 2-class
datasets.

4.1.2 The Digikala dataset

We also evaluated the proposed model on the Digikala
dataset which is in Persian. This dataset consists of
100,000 rows and 12 different columns, including user
reviews, product pros and cons, number of likes and
dislikes, product ID, and more. We evaluated the per-
formance of the proposed model in two cases:
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• In the case where our data has two classes and
has two labels ”Recommended” and ”Not Recom-
mended”,

• In the case where the data has three classes and
has three labels ”Recommended”, ”Not Recom-
mended” and ”No Opinion”.

The specifications of this dataset after preprocessing
are shown in Table 2.

Table 1: Amazon dataset statistics
tag number of Sentences
1 5774
2 7907
3 17490
4 32777
5 87284

Total 151232

Table 2: Digikala dataset statistics
* Tag Number of Sentences

Not Recommended -1 16098
No Opinion 0 10528

Recommended 1 36960
Total - 63586

Figure 5: (a) distribution of labels within comments
for the dataset with 5 classes (b) distribution of labels
within comments for the dataset with 2 classes

4.2 Experiment setup

The proposed method in this research is implemented
using the Python development environment. The Geo-
metric PyTorch library5, which is a PyTorch-based li-
brary designed for implementing graph neural networks,
was used to implement the graph convolutional and
graph relational convolutional networks. The Hazm6

5https://pytorch-geometric.readthedocs.io/en/latest
6https://github.com/roshan-research/hazm

Figure 6: (a) distribution of word count within com-
ments for the dataset with 5 classes (b) distribution
of word count within comments for the dataset with
2 classes

library was used for natural language processing in Per-
sian, and the spaCy7 library was used for English.

4.3 Evaluation metrics

To evaluate the performance of the proposed models, we
use the cross-entropy loss function, the accuracy met-
ric, and the F1 score. Cross entropy is a concept that
is commonly used in statistics and machine learning,
often as a loss function for measuring the dissimilar-
ity between the predicted probability distribution and
the actual distribution of a classification problem. The
intuition behind cross-entropy is that it measures how
much the predicted probabilities match the real prob-
abilities. The cross-entropy between the real distribu-
tion P and the predicted distribution Q is calculated as:
crossentropy(P,Q) = −

∑
i pi ∗ log(qi)

Accuracy and F1 score are two metrics that are com-
monly used to evaluate text classification methods and
are calculated according to the following formulas: Ac-
curacy = (TP + TN) / (TP + FP + FN + TN), Preci-
sion = TP / (TP + FP), Recall = TP / (TP + FN), F1-
score = 2 * (Precision * Recall) / (Precision + Recall),
Where: TN: Represents the number of records that the
model correctly identified as negative and labeled as
negative. TP: Represents the number of records that
the model correctly identified as positive and labeled as
positive. FP: Represents the number of records that the
model incorrectly identified as negative but were labeled
as positive. FN: Represents the number of records that
the model incorrectly identified as positive but were la-
beled as negative.

4.4 Results

4.4.1 Results on Amazon dataset

We evaluate the performance of the proposed model in
two cases:

7https://spacy.io
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• In the case where our data has two classes (exclud-
ing class with label 3), the first class includes re-
views with labels 1 and 2, and the second class
includes reviews with labels 4 and 5.

• In the case where our data has five classes, they
have labels 1, 2, 3, 4, and 5.

In each of these two cases, the performance of the
model is evaluated when the data is imbalanced and
when the data is balanced. The results of this compar-
ison are presented in Table 3.

Table 3: Amazon dataset Results

Model
2 class

Balanced Imbalance
Accuracy Accuracy F1-score

BERT 64.46 85.88 71.42
RoBERTa 65.35 87.67 72.26

BERT + GCN 66.48 89.60 72.36
RoBERTa + GCN 67.25 89.66 73.50
BERT + RGCN 70.53 89.75 72.54

RoBERTa + RGCN 70.59 89.82 73.92
5 class

BERT 42.00 56.98 50.06
RoBERTa 43.10 57.04 51.43

BERT + GCN 42.37 57.09 50.17
RoBERTa + GCN 43.96 57.18 52.70
BERT + RGCN 43.13 57.25 50.28

RoBERTa + RGCN 44.28 57.28 52.83

In table 3, We can see that all the percentages in
RoBERTa is higher that the numbers gained in the
BERT model, for example, accuracy in balanced dataset
is 65.35% in RoBERTa but it is 64.46% in BERT in
the 2-class version and 43.10% to 42% in 5-class ver-
sion. Transformers for Natural Language Processing be-
yond BERT refer to advanced transformer-based models
such as RoBERTa that were created to improve upon
the limitations of BERT in natural language process-
ing tasks. These models leverage the transformer archi-
tecture’s ability to handle long-range dependencies and
context-sensitive embeddings to offer improved perfor-
mance on a variety of natural language processing tasks.
BERT revolutionized the field of natural language pro-
cessing by introducing a bidirectional transformer-based
model that could understand a word’s context based
on its entire surroundings (both left and right of the
word). However, subsequent models such as RoBERTa
were developed to address some of BERT’s limitations,
such as pretraining incoherence fine-tuning inefficiency,
and inability to use the full context of a sentence in the
masked language model. These changes lead to a sig-
nificant improvement in its performance over BERT as
can be seen from table 3. RoBERTa, despite its advan-
tages, also comes with a set of challenges. Due to its
large size and complexity, it requires significant compu-

tational resources and time to train. Additionally, given
its capacity, it can easily overfit on smaller datasets if
not fine-tuned properly.

As can be seen in the table 3, compared to the per-
formance of BERT and RoBERTa models, in both bal-
anced and imbalanced data cases, when graph neu-
ral networks such as RGCN and GCN are used in
combination with the above language models, the per-
formance of the models (RGCN/GCN) + BERT in-
creases from BERT and (RGCN/GCN) + RoBERTa
from RoBERTa, which is due to the advantages of using
graph neural networks, some of which were mentioned
above. For example in balanced 5-class version of the
dataset, the accuracy of the model GCN + RoBERTa is
43.96%, which is higher than the accuracy of the model
GCN + BERT, which is 42.37%. According to the re-
search and results, GCN has a much higher accuracy
than other methods, which shows that GCN is a much
more standard model in classification and natural lan-
guage processing problems. Each of these methods has
its advantages and may be suitable for different scenar-
ios. GNNs are designed to effectively capture rich se-
mantic relationships and dependencies between nodes
in a graph, which enables better understanding and
representation of text content. Text classification of-
ten requires considering the contextual information of
words or phrases to make accurate predictions. GNNs
can aggregate information from neighboring nodes in
the graph, which allows them to effectively collect and
propagate textual information. This allows GNNs to use
the local context of each node and make informed deci-
sions about text classification problems. On the other
hand, one of the challenges of text classification is deal-
ing with inputs of different lengths, such as sentences
and phrases with different numbers of words. GNNs can
naturally handle variable-length inputs using the graph
structure. GNNs can depict the relationships and de-
pendencies between words or sentences and provide a
more robust and flexible approach to text classification.
GNNs also perform well in modeling long-range depen-
dencies in a graph. In text classification, long-range
dependencies refer to dependencies that span the entire
dataset and text. By propagating information through-
out the graph, GNNs can capture these long-range de-
pendencies and enable a comprehensive understanding
of textual data and its classification.

Finally, in table 3, we can see RoBERTa have more
accuracy when used with RGCN than the case when it
is used with GCN. Best percentages are acquired from
RoBERTa + RGCN model, it has 70.59% and 44.28%
accuracy in balanced versions and 73.92% and 52.83%
F1 score in imbalanced versions. Relational Graph Con-
volutional Networks (RGCNs) offer advantages over tra-
ditional Graph Convolutional Networks (GCNs) in sce-
narios where the relationships between nodes are com-
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plex and diverse. The relationships between entities
(e.g., words, documents, and entities mentioned in the
text) can be complex and diverse. RGCNs can model
such complex relationships more effectively than GCNs.
For example, in document classification, words may
have different types of relationships (such as grammati-
cal dependencies, semantic relations, and structural re-
lations like co-occurrence), and RGCNs can capture and
utilize these relationships more fully. RGCNs allow
for relation-specific message passing, which means that
they can define different transformation matrices (Wr)
based on the type of relationship between nodes. As a
result, a specific message (h∗Wr) for that relationship is
sent for each type of relationship, enabling the model to
distinguish between different types of interactions and
leading to representations with finer differences. In con-
trast, GCNs typically apply the same transformation to
all edges in the graph, which may not be optimal for
capturing the diverse relationships in text documents.
RGCNs provide a more expressive framework for mod-
eling structured graph data. By explicitly incorporat-
ing relation-specific parameters, they offer more flex-
ibility in learning representations that are tailored to
the specific characteristics of the data and can lead to
better performance, especially in tasks where relation-
ships play an important role, such as social networks,
and text classification with rich semantic and syntactic
dependencies. Given that a separate adjacency matrix
(Ar) is defined for each type of relationship in RGCNs,
this adjacency matrix represents not only the presence
of edges between nodes but also the type or nature of
the relationships. As a result, they are more flexible
than GCNs and can better generalize to unseen or het-
erogeneous data. By learning separate parameters for
different types of relationships, the model becomes more
robust to changes in the distribution of the data and
increases its ability to adapt to different contexts and
domains. This helps to solve the challenge of sparsity
and leads to improved results and robustness of text
classification models.

In summary, RGCNs offer advantages over GCNs in
handling complex relationships and capturing diverse
interactions in documents, while relation-specific adja-
cency matrices provide a richer representation of rela-
tionships, increasing the capacity of the model and im-
proving its generalization capabilities. These charac-
teristics make RGCNs particularly suitable for message
passing in text classification tasks.

4.4.2 Results on Digikala dataset

ParsBERT is pre-trained on a large corpus of Persian
text, which allows it to capture language features and
specific differences in the Persian language.

Table 4 shows the results and accuracy of the pro-
posed model on the Digikala dataset. As can be

Table 4: Digikala dataset Results

Model
2 class

balanced imbalance
accuracy accuracy F1-score

ParsBERT 68 87 72
ParsBERT + GCN 70 91.1 74
ParsBERT + RGCN 70.36 91.17 74.15

3 class
ParsBERT 57 62 55

ParsBERT + GCN 58 63.9 55
ParsBERT + RGCN 58.29 63.94 55.11

seen, the combination of the ParsBERT model with the
RGCN model achieved better results than the combi-
nation of ParsBERT with GCN. Using ParsBERT and
GCN on the balanced two-class dataset with 500 epochs,
we achieved an accuracy of 70.36% on the test data and
an accuracy of 71.51% on the training data. Increasing
the number of epochs to 1000 resulted in an accuracy
of 70.26% on the test data and an accuracy of 71.86%
on the training data. It is predicted that in this case,
the model has overfitted, and we reached an accuracy
of 58.29% on the test data and an accuracy of 59.74%
on the training data in the balanced three-class dataset
with 1000 epochs, considering a learning rate of 0.01
and DROPOUT of 0.5. It is worth noting that the
amount of performance improvement of the RGCN +
ParsBERT model compared to the GCN + ParsBERT
model in Persian is less than the amount of improvement
of the RGCN + (BERT/ RoBERTa) models compared
to GCN + (BERT/ RoBERTa) in English. Overall, it
can be said that English and Persian languages have
significant differences in terms of grammar, syntax, and
language features, some of which are mentioned below:

• In English, words are usually separated by spaces,
which makes tokenization relatively simple. In Per-
sian, words are connected and there is no clear
space between them, so the tokenization process
is more difficult.

• In Persian, compound words are often formed by
combining several single words. Correctly tokeniz-
ing these combinations can sometimes be difficult,
as the boundaries between the constituent words
must be accurately identified.

• The complex morphological problem: In Persian
is such that Persian words can undergo extensive
changes through prefixes, suffixes, and root inflec-
tions to indicate different grammatical features.
This complexity adds layer of difficulty to tokeniza-
tion.

• Persian words can be ambiguous, meaning that a
string of characters can have multiple valid inter-
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pretations. Resolving this ambiguity during tok-
enization and stemming requires a deeper under-
standing of the language and its context.

5 Conclusion and Future work

5.1 Conclusion

In this paper, we considered the classification of English
and Persian texts and addressed this issue using graph
neural networks, focusing on relational graph convolu-
tional networks. We made a heterogeneous text graph
from the entire dataset (all documents and all unique
words) and constructed the graph by defining three
types of relationships (co-occurrence, similarity, and fre-
quency) and weighted edges IDF-TF, PMI, and Jaccard.
We then used pre-trained models such as BERT and
RoBERTa to extract features for each node and used
a two-layer relational graph convolutional network to
train the model, which improved the results compared
to the graph convolutional network.

5.2 Future work

Many improvements can be made in this research area.
Most supervised deep-learning models are trained on
large amounts of labeled data. In practice, collecting
such labels in any new domain is expensive. A language
model (such as BERT) with fine-tuning for a specific
task requires much less labeling than training a model
from scratch. Therefore, there are opportunities to de-
velop new methods such as zero-shot or few-shot learn-
ing based on these language models.

In most text classification methods with GNNs, edges
with a fixed value extracted from statistical informa-
tion of documents are used to construct graphs. This
approach is applied to GNNs at the corpus level and
the document level. However, to better investigate the
complex relationship between words and documents, it
is suggested to use dynamic edges. Dynamic edges in
GNNs can be learned from various sources such as graph
structure, semantic information of documents, or other
models.

In addition, a more complex algorithm can be used to
calculate the edge between two documents, and it is rec-
ommended to filter the word-word and word-document
relationships to simplify the graph structure, i.e., iden-
tify important edges based on a criterion and only store
them.

GNN text classification models perform well at the
corpus level. These models are mostly transductive,
meaning that they only work on the present graph and
cannot be applied to new nodes and edges. when a new
document is added, the graph must be reconstructed
from scratch, which is very expensive and impractical

for real-world applications. Therefore, it is worth con-
sidering the inductive learning approach.

Since the layers of RGCN are stacked in such a way
that the input of one layer is the output of the previ-
ous layer, taking the sum over the relationships causes
an accumulation of activations. However, for two-layer
networks, it does not seem that this event affects the
performance of the model. For deeper models, taking
the average over the relationships instead of the sum
may be more appropriate.
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