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Abstract

Breast cancer remains one of the most prevalent and
lethal diseases among women, with challenges in treat-
ment stemming from the biological and genetic het-
erogeneity of tumors. While prior studies have devel-
oped grading models using machine learning to improve
prognostic accuracy, they reached a peak accuracy of
91%. This paper advances this work by employing a
more extensive dataset and refined data selection meth-
ods, achieving an accuracy improvement to 92%. Gene
expression datasets were collected from the Gene Ex-
pression Omnibus (GEO) repository, undergoing pre-
processing, integration, and normalization, before be-
ing analyzed by the XGBoost algorithm to develop a
predictive tumor grading model. Evaluation results
show that our expanded dataset and modified biomarker
panel of 70 markers contribute to enhanced grading ac-
curacy, particularly in classifying grade 2 and indeter-
minate tumors, which are often challenging to diagnose
and treat. This model underscores the effectiveness of
combining expanded transcriptomic data with advanced
machine learning techniques. Furthermore, it highlights
key genes associated with prognosis, offering insights
into potential biomarkers for future research and clini-
cal applications.

Keywords: Gene Expression, Machine Learning, Can-
cer Prognosis

1 Introduction

Breast cancer remains one of the most prevalent and
deadly malignancies affecting women globally, with mil-
lions of new diagnoses each year [3]. Despite advance-
ments in detection methods and therapeutic interven-
tions, breast cancer continues to account for a signif-
icant proportion of cancer-related deaths. Accurate
prognostication has become increasingly critical, as it
directly influences patient outcomes and guides clinical
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decision-making. A key aspect of this challenge lies in
the classification of breast tumors, a process central to
understanding disease aggressiveness and determining
the prognosis for patients. [10]

In recent years, substantial progress has been made in
classifying breast cancer subtypes, particularly through
the use of immunohistochemical markers. Key markers
such as the estrogen receptor (ER), progesterone recep-
tor (PR), and human epidermal growth factor receptor
2 (HER2) are now pivotal in identifying breast cancer
subtypes [15]. This molecular classification approach
has enhanced the precision of treatment regimens, tai-
loring interventions based on the specific characteristics
of each subtype. While these advancements have im-
proved patient outcomes, breast cancer remains a het-
erogeneous disease. Tumors progress through unique
sets of genetic mutations and biological variations, com-
plicating the prediction of disease progression and treat-
ment responses based on traditional classification sys-
tems. This complexity underscores the need for indi-
vidualized treatment strategies, taking into account the
diversity in genetic alterations, gene expression profiles,
and signaling pathways. [16]

A significant tool in advancing breast cancer diag-
nostics is the use of gene expression panels, such as the
PAM50 classification system. The PAM50 categorizes
tumors into four major subtypes: Luminal A, Lumi-
nal B, Basal-like, and HER2-enriched. The system is
based on a 50-gene panel that provides deeper insights
into tumor biology and their likely treatment responses
[15]. By incorporating gene expression data, models
like PAM50 have expanded our understanding of the
biological variability in breast cancer, leading to more
personalized treatment strategies.

As our knowledge of tumor biology expands, the de-
mand for more accurate predictive models that align
clinical decisions with molecular data continues to grow.
Although efforts have been made to refine these models,
challenges remain. The genetic diversity and varying
histological features of breast tumors complicate pre-
dictions regarding disease progression and therapeutic
responses. Despite progress in molecular classification
and predictive modeling, the complexity of breast can-
cer remains a significant barrier to achieving highly ac-
curate prognoses. [12]

To address these challenges, it is essential to develop
models that classify breast cancer based on intrinsic
tumor features, such as histological grade, which can
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provide more precise predictions than traditional fac-
tors like tumor size and stage [11, 6]. By combining
both clinical and molecular data, such models can sup-
port more personalized diagnostic and treatment strate-
gies. Although considerable advances have been made
in understanding breast cancer subtypes, aligning clin-
ical features with molecular patterns remains a criti-
cal challenge. This disconnect highlights the need for
models that better identify high-risk tumors, optimiz-
ing treatment regimens to avoid both undertreatment
and overtreatment [14, 7].

Furthermore, the difficulty of correlating clinical fea-
tures with the molecular profiles of breast tumors is a
significant barrier to accurately predicting patient prog-
nosis and selecting appropriate therapies [9, 17]. De-
spite progress in classification methods and expanding
knowledge of tumor biology, there is still a considerable
gap between understanding molecular patterns and ap-
plying them in real-world clinical practice. Predictive
models based on molecular profiling could help bridge
this gap by reducing the risk of underdiagnosing high-
risk cases while also minimizing unnecessary treatments
in low-risk patients. Achieving this balance could reduce
reliance on aggressive systemic therapies, ultimately im-
proving treatment outcomes while minimizing adverse
effects [2, 4].

In conclusion, developing more accurate and reliable
models for breast cancer grading and prognosis is crucial
for improving patient outcomes. By integrating tran-
scriptomic profiles, employing advanced machine learn-
ing techniques, and incorporating both genetic and his-
tological data, this study aims to enhance diagnostic
accuracy and facilitate personalized treatment strate-
gies. Identifying key predictive biomarkers could open
new therapeutic pathways, especially for cases that have
historically posed significant treatment challenges. As
bioinformatics and molecular biology continue to ad-
vance, these innovations have the potential to redefine
breast cancer treatment and prognostication [5].

Histological grading adds another layer of insight by
evaluating how much tumor cells differ from normal cells
and how invasive the cancer has become. This grad-
ing process is a powerful prognostic tool for assessing
the aggressiveness of breast cancer [12]. Grade 2 tu-
mors, in particular, present a unique challenge. These
tumors are considered intermediate in terms of cellular
morphology, biological characteristics, and invasive po-
tential. As such, treatment decisions for patients with
grade 2 tumors are often uncertain, as they fall into
a diagnostic gray area. Studies suggest that between
30% and 60% of grade 2 tumors fall within this uncer-
tain range, complicating the decision between aggressive
or conservative treatment strategies [8]. This ambigu-
ity has resulted in both undertreatment and overtreat-
ment, highlighting the need for more accurate prognos-

tic tools [13].
Clinicians traditionally have more success in deter-

mining treatment strategies for grade 1 or grade 3 tu-
mors, while grade 2 tumors remain challenging due to
their intermediate nature. In response, researchers have
begun utilizing advanced machine learning and genetic
data analysis techniques to refine diagnostic accuracy
and improve treatment predictions.

The main objective of this study is to address these
diagnostic and therapeutic challenges by developing a
robust breast cancer grading model. This model inte-
grates transcriptomic data from multiple datasets, fo-
cusing on genetic and histological features, and em-
ploys the XGBoost algorithm for analysis. The model
aims to improve the classification and prognosis of grade
2 and indeterminate tumors, enhancing predictive ac-
curacy and facilitating personalized treatment strate-
gies. Furthermore, the model seeks to identify key
genes that can reliably predict relapse-free survival,
overall survival, and distant metastasis-free survival,
irrespective of receptor status, which is typically as-
sessed through conventional histopathological methods.
Identifying such biomarkers could open new therapeu-
tic targets, especially for cases that currently lack effec-
tive treatment options. In summary, although existing
models for breast cancer prognosis have made consider-
able progress, challenges persist, particularly in achiev-
ing high predictive accuracy for intermediate-grade tu-
mors [1]. This paper explores a machine learning-based
approach that integrates both genetic and histologi-
cal data, demonstrating improved predictive accuracy
and utilizing a more comprehensive dataset compared
to previous models. These findings underscore the po-
tential of combining transcriptomic data with advanced
machine learning techniques to enhance breast cancer
prognosis.

2 Materials and methods

2.1 Computational framework

The computational framework for this study is illus-
trated in Figure 2.1, which presents a comprehensive
overview of the methodology. This workflow encom-
passes key stages, starting with data preprocessing and
integration, followed by the construction of the ma-
chine learning model and cross-validation procedures.
Additionally, the framework highlights essential stages
of model interpretation, including feature prioritiza-
tion and prognostic data analysis. This structured ap-
proach ensures a robust and reproducible process, lever-
aging state-of-the-art machine learning techniques for
enhanced breast cancer grading and prognosis predic-
tion.
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Figure 1: Overview of the framework model

2.2 Dataset, pre-processing and integration

Gene expression data from 33 publicly available breast
cancer datasets corresponding to the GPL570 (Genome
U133 Plus 2.0) and GPL96 (Genome U133A) plat-
forms were obtained from the Gene Expression Omnibus
(GEO) database. A total of 5,334 breast tumor sam-
ples and 70 normal breast tissue samples were collected,
focusing on distinguishing gene expression profiles be-
tween malignant and non-malignant tissues. Samples
from patients with prior treatments were excluded to
mitigate potential biases introduced by treatment ef-
fects.

Data collection followed a rigorous approach, begin-
ning with a focus on datasets specifically related to
breast cancer. The inclusion criteria were restricted to
datasets examining normal and malignant breast tis-
sues, and only datasets corresponding to the Affymetrix
GPL96 or GPL570 platforms were considered. Further-
more, only datasets containing human tissue samples
were selected, which yielded an initial pool of 16,044
datasets.

A date filter was applied to include datasets collected
between 2006 and 2021, ensuring that only recent and
relevant data were used for the study. Subsequently,
datasets were sorted by the number of samples, with
those containing the highest number of samples prior-
itized. To ensure statistical robustness, a threshold of
at least 25 samples per dataset was applied, narrowing
the selection to 243 datasets. Of these, only datasets
with available clinical information—such as histological
grade, overall survival, distant metastasis-free survival,
or relapse-free survival were retained. Finally, samples
from patients who had received prior treatment were
excluded to minimize confounding variables in gene ex-
pression analysis Table 1.

Given the large and diverse sample size, which in-
cludes tumor samples from various grades and gene ex-
pression profiles, the model has demonstrated strong
generalizability and robustness. The dataset’s compre-

hensive inclusion of different tumor grades and clini-
cal features enables the model to generalize effectively
to new, unseen data, making it suitable for application
across various clinical settings and populations.

Data pre-processing involved the normalization of raw
intensity values from Affymetrix CEL files using the
Robust Multichip Average (RMA) method. Batch ef-
fects, which can arise from integrating datasets collected
under different experimental conditions, were corrected
using the COMBAT algorithm. These steps were im-
plemented in R version 4.4 with the appropriate bioin-
formatics libraries. Following normalization and batch
correction, probe sets were mapped to their correspond-
ing genes. In instances where multiple probes corre-
sponded to the same gene, the mean expression value
of the probes was computed to ensure consistent and
accurate gene expression representation.

The data integration and processing workflow are out-
lined in Figure 1. The resulting integrated dataset
was used for training and testing the machine learning
model. Initially, the model was trained using grade 1
and grade 3 tumor samples (1,891 samples), represent-
ing distinct low- and high-risk categories. Subsequently,
the model was applied to grade 2 and unknown-grade
tumor samples (3,443 samples), with the aim of strati-
fying them into low-risk and high-risk categories based
on their gene expression profiles and clinical character-
istics.

2.3 Machine learning model development

The machine learning model was designed as a binary
classifier, using gene expression levels as input features
and cancer grades (grade 1 vs. grade 3) as output labels.
The development process followed a comprehensive ma-
chine learning pipeline to minimize overfitting and im-
prove model generalization. The dataset was split into
training 80%, validation 10%, and testing 10% sets. Hy-
perparameter tuning was performed on the validation
set, and model performance was assessed on the testing
set.

To address class imbalance, the Synthetic Minority
Over-sampling Technique (SMOTE) was applied, gener-
ating synthetic samples for the minority class (grade 1)
to ensure balanced training. Outlier detection was con-
ducted using the K-nearest neighbor algorithm, imple-
mented with the PyOD library, and samples flagged as
outliers were excluded from training to improve model
robustness.

The core model was constructed using XGBoost (eX-
treme Gradient Boosting), an ensemble learning method
known for optimizing classification tasks through the
combination of weak decision trees. During the training
phase, a grid search was employed to optimize hyper-
parameters, including maximum tree depth, subsample
ratio, and gamma. The optimized parameters for the
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Cancer Grade Model. were a maximum tree depth of 5,
subsample ratio of 0.6, minimum child weight of 1, and
gamma of 0.5. Cross-validation was utilized to select
the optimal model configuration.

Given the large number of genes in the dataset, us-
ing all features directly in the model would increase
complexity and potentially reduce accuracy. To ad-
dress this, Principal Component Analysis (PCA) was
employed for dimensionality reduction. PCA allowed
us to reduce the high-dimensional gene expression data
to a smaller set of principal components while retaining
most of the information. This reduction in dimension-
ality led to several benefits: it decreased the model’s
complexity, reduced training time, and minimized the
risk of overfitting by eliminating noise and irrelevant
features.

Feature importance was further assessed using the
Gain metric, which highlights the genes contribut-
ing most to model performance. Additionally, SHAP
(SHapley Additive exPlanations) values were calculated
to provide an interpretable understanding of each fea-
ture’s impact on model predictions, ensuring trans-
parency and interpretability in the decision-making pro-
cess.

3 Results

3.1 Model Performance and Validation

The dataset was divided into two subsets: a devel-
opment dataset consisting of grade 1 and grade 3 tu-
mor samples (total of 1,891), which was used to train
and test the machine learning model, and a prediction
dataset composed of grade 2 and unknown-grade tumors
(total of 3,443). The model was applied to the pre-
diction dataset to classify these intermediate-grade and
ambiguous tumors into low-risk (1,330) and high-risk
(2,113) groups based on their gene expression profiles.

Model validation was conducted using 10-fold cross-
validation, with performance metrics such as accuracy,
AUC, F1-score, precision, recall, and ROC curve re-
ported (Table1). The results demonstrate the high ef-
ficacy of the model in differentiating between tumor
grades, while hyperparameter tuning effectively mini-
mized the risk of overfitting. Furthermore, the imple-
mentation of SMOTE addressed the class imbalance be-
tween grade 1 and grade 3 tumors, ensuring balanced
model training. Outlier detection using the K-nearest
neighbor algorithm further enhanced the dataset by
removing anomalous samples, thereby improving the
model’s overall stability and predictive power.

Given the large and diverse sample size, the model
has demonstrated strong generalizability and robust-
ness. The dataset’s comprehensive inclusion of differ-
ent tumor grades and gene expression profiles allows
the model to effectively generalize to new, unseen data.

Table 1: Model Performance and Validation
Performance metric All genes Selected genes

Accuracy 0.92 0.92

AUC 0.95 0.92

F1score 0.90 0.91

Precision 0.90 0.91

Recall 0.89 0.85

This ensures that the model is capable of accurately
predicting tumor risk in a variety of clinical settings
and populations, extending its applicability beyond the
training data. The model was also tested on additional
external datasets, where it maintained high predictive
performance, further supporting its robust generaliz-
ability.

3.2 Feature Selection and Interpretation

The 70-gene panel selected for this study was specifi-
cally chosen for its capacity to reflect key tumor clin-
ical characteristics, including histological grade,distant
metastasis-free survival, relapse-free survival and overall
survival. These genes represent critical biological differ-
ences between high-risk and low-risk tumors, enabling
more precise classification of heterogeneous tumors, par-
ticularly those in grade 2. For example, BIRC5, which is
highly expressed in high-risk tumors, is associated with
cell proliferation and inhibition of apoptosis, whereas
LINC00472, which is more active in low-risk tumors, is
linked to tumor-suppressing pathways, such as the p53
pathway.

The selection of these genes was based on the Gain
metric derived from the XGBoost algorithm, which eval-
uates the relative importance of each gene in the clas-
sification model. Up to the inclusion of 70 genes, the
Gain values allowed for meaningful differentiation be-
tween the genes, ensuring robust model performance.
However, beyond the 70-gene threshold, the Gain val-
ues for additional genes exhibited minimal differences,
typically only at the decimal level. These marginal dif-
ferences indicated that the inclusion of additional genes
would not significantly impact the model’s predictive
performance, thereby justifying the exclusion of further
genes. Consequently, the 70-gene panel was determined
to be the optimal balance between predictive perfor-
mance and interpretability.

Key features that significantly contributed to the
model’s predictive power were identified through the
Gain metric, which highlighted the most influential
genes in the classification task. These genes are inte-
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gral to fundamental cellular processes, such as cancer
cell proliferation and mitosis, reinforcing their prognos-
tic relevance in breast cancer. To visualize the effects of
feature selection, predictions for both the full gene set
and the 70-gene subset are presented in Figure 2 and
Figure 3. These results demonstrate that the model,
when trained on the full set of genes or the reduced
70-gene panel, shows similar performance in terms of
accuracy. This confirms that the 70 genes retain the
essential information required for tumor classification
while reducing dimensionality.

This approach not only reduces computational com-
plexity and enhances efficiency but also mitigates the
risk of overfitting, thereby ensuring the model’s ability
to generalize effectively to new datasets. Additionally,
the manageable size of the 70-gene panel makes it clini-
cally viable, reducing both the costs and logistical chal-
lenges typically associated with large-scale genetic test-
ing. Further validation, including survival analysis and
comparisons with established clinical methods such as
OncotypeDX and EndoPredict, has demonstrated the
competitive predictive power of this gene panel, sup-
porting its selection as both scientifically and clinically
sound.

To enhance model interpretability, SHAP (SHapley
Additive exPlanations) values were calculated, provid-
ing insights into the specific influence of each gene on
the model’s predictions Figure 4. This interpretability
analysis revealed that genes such as BIRC5 and CDC20
played a prominent role in distinguishing high-risk tu-
mor samples, thereby making the model’s decision-
making process more transparent and clinically action-
able. This transparency is crucial for ensuring the
model’s applicability in clinical settings where inter-
pretability is essential for guiding therapeutic decisions.

3.3 Clinical Relevance and Prognostic Accuracy

The model demonstrated its potential to identify high-
risk and low-risk groups among grade 2 and unknown-
grade tumors, contributing to more accurate prognos-
tic assessment. The identified key genes, particularly
BIRC5 and CDC20, are strongly associated with can-
cer progression and could serve as biomarkers for guid-
ing treatment decisions. These findings highlight the
model’s potential clinical utility, providing an addi-
tional tool for stratifying patients based on the risk of
recurrence and aggressiveness. The detailed evaluation
of performance metrics, including accuracy, AUC, and
F1-score, is summarized in Table1. This comprehen-
sive assessment demonstrates the model’s effectiveness
in improving risk classification, further discussed in the
subsequent sections.

3.4 Application to Grade 2 Tumors

One of the major challenges in breast cancer diagnostics
is the precise classification of grade 2 tumors, owing
to their intermediate characteristics and heterogeneous
behavior. The model was applied to a total of 3,443
grade 2 and unknown-grade tumors from the prediction
dataset, categorizing them into high-risk and low-risk
groups. This stratification enables the development of
more tailored and individualized treatment strategies
by providing a clearer prognostic profile for tumors that
traditionally present significant diagnostic uncertainty.

The reclassification results obtained from the model
were benchmarked against established genomic tests,
including OncotypeDX, EndoPredict, and GGI. These
genomic assays, which evaluate gene expression levels
linked to tumor aggressiveness, are widely recommended
in clinical guidelines for determining adjuvant systemic
therapies. A Table 2 illustrates the overlap between the
biomarkers identified by our model and those reported
by the aforementioned tests.

3.5 Genomic Tests for Clinical Assessment of Breast
Cancer

The clinical assessment of breast cancer, particularly for
determining the aggressiveness and potential recurrence
of tumors, often involves the use of established genomic
tests. These tests, such as OncotypeDX, EndoPredict,
and GGI, evaluate the expression levels of genes associ-
ated with tumor biology and are widely integrated into
clinical guidelines to guide decisions regarding adjuvant
systemic therapy.

To benchmark the performance of the our model, the
reclassification of grade 2 and unknown-grade tumors
was directly compared with the results from these ge-
nomic tests. The model classified 3,443 tumors into
high-risk and low-risk categories based on gene expres-
sion profiles. A comparative analysis revealed notable
overlap between the biomarkers identified by model and
those used by OncotypeDX, EndoPredict, and GGI,
highlighting shared genetic indicators of cancer aggres-
siveness.

The Table 2 illustrates the common and unique
biomarkers identified across these models, emphasiz-
ing the model’s alignment with clinically accepted stan-
dards while also introducing novel gene markers (full
gene list available in Supplementary Table 3). This com-
parison underscores the potential of the model to serve
as a complementary or alternative tool for risk stratifi-
cation in clinical practice, especially for grade 2 tumors,
where the current genomic tests may yield ambiguous
results.
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4 Discussion

Our study demonstrates that the breast cancer grade
model, developed using full gene expression profiles
and subsequently optimized with 70 selected key genes,
provides highly accurate predictions for breast cancer
prognosis. Specifically, the model was effective in clas-
sifying grade 2 and unknown-grade tumors into distinct
high-risk and low-risk categories, which is a critical
advancement in the classification of these ambiguous
cases. The identification of key genes, such as BIRC5,
CDC20, and CENPN, was particularly important,
as these biomarkers significantly contribute to tumor
aggressiveness and patient prognosis. The model’s per-
formance was comparable to widely accepted genomic
tools, such as OncotypeDX and EndoPredict, which are
currently used in clinical practice to inform treatment
decisions. However, the mpdel’s unique strength lies
in its ability to handle grade 2 tumors—traditionally
challenging cases—more effectively than these existing
tests. This ability is particularly valuable because
accurate classification of grade 2 tumors is crucial in
preventing under- or overtreatment, both of which
can lead to poor patient outcomes. One of the most
significant findings of this study is the identification of
BIRC5, CDC20, and CENPN as influential genes in
breast cancer progression. These genes are involved in
crucial cellular processes such as cell cycle regulation
and mitosis, making them not only predictive of
tumor behavior but also potential therapeutic targets.
By focusing on these biomarkers, the model model
could guide the development of personalized treat-
ment strategies aimed at targeting aggressive tumor
phenotypes. The ability to accurately classify tumors
based on these molecular signatures may also reduce
the use of unnecessary systemic therapies, thereby
minimizing side effects for low-risk patients while en-
suring high-risk patients receive appropriate treatment.
While the model exhibited strong predictive power,
several limitations must be acknowledged. First, the
reliance on gene expression data from specific platforms
(GPL570 and GPL96) could restrict the generalizability
of the model to datasets from other platforms or newer
genomic technologies. Additionally, although the use
of SMOTE effectively handled the class imbalance
between grade 1 and grade 3 tumors, the potential for
model bias remains, particularly in cases where grade 1
tumors were underrepresented in the training dataset.
In future research, efforts should be directed toward
validating the model on more diverse datasets that
include data from a broader range of platforms and
technologies. Expanding the model to include multi-
omics data, such as proteomics or histopathological
imaging, could also enhance its predictive capacity and
clinical relevance. Moreover, further investigation into
the functional role of biomarkers like BIRC5 and CDC2

may uncover novel therapeutic strategies, especially
for patients with high-risk grade 2 tumors. The model
represents a significant advancement in breast cancer
prognosis, particularly in the classification of grade
2 and unknown-grade tumors. By integrating gene
expression data with machine learning techniques, the
model provides an accurate risk stratification that can
be directly applied to clinical decision-making. The
identification of key biomarkers offers new avenues for
therapeutic intervention, while the model’s capacity to
address challenges in grade 2 classification highlights
its potential as an alternative or complementary tool
in current clinical practice. Further refinement and
validation of the model are necessary to realize its full
potential in improving patient outcomes and advancing
personalized medicine.

• Full-size view of the figure1

• Full-size view of the Figure 2

• Full-size view of the Figure 3

• Full-size view of the Figure 4

• Full-size view of the Table 1

• Full-size view of the Table 2

• Full-size view of the Table 3

5 Data availability

The datasets supporting the findings of this study were
obtained from the Gene Expression Omnibus (GEO)
repository [http://www.ncbi.nlm.nih.gov/geo].

6 Code availability

The code will be made available at [https://github.
com/users/Fatemeazizi11/projects/1]
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