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Abstract

In today’s data-driven world, the growing volume of
information demands the development of models that
balance accuracy and computational efficiency. Drug
repurposing has emerged as a pivotal strategy in the
pharmaceutical industry, enabling the identification of
new therapeutic uses for existing drugs. However, with
the increasing amount of available data, it is essential
for researchers and industry stakeholders to create mod-
els that maintain predictive accuracy while minimizing
computational costs. Our study builds on the state-of-
the-art WNMFDDA (Weighted Graph Regularized Col-
laborative Non-negative Matrix Factorization for Drug-
Disease Association Prediction) model, which is known
for its high predictive accuracy. We focus on optimizing
this approach by significantly reducing memory usage
and computational time, achieving an 8-fold reduction
in time cost and over a 400-fold decrease in storage cost
during model training, all without compromising accu-
racy. Our findings show that several alternative meth-
ods can deliver performance metrics close to the ref-
erence model while substantially lowering both mem-
ory and computational requirements. This approach
not only retains the accuracy of drug-disease associa-
tion predictions but also enhances the efficiency of the
drug repurposing process, enabling quicker transitions
from research to clinical applications. By optimizing
computational resources, this work provides a scalable
and efficient solution for future drug discovery and re-
purposing efforts.
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1 Introduction

Drug repurposing, also known as drug repositioning, has
become a clever and efficient strategy in the pharmaceu-
tical industry for developing new treatments. Instead of
the traditional route of discovering and creating brand-
new drugs, this approach takes advantage of medica-
tions that are already approved and prescribed for spe-
cific diseases. What’s fascinating is that these drugs
might have untapped potential for treating other con-
ditions we don’t fully grasp yet. By leveraging existing
clinical data and regulatory approvals, drug repurpos-
ing speeds up the research and development process[1].
This means we can significantly cut down on both the
financial costs and the time usually required, since these
drugs have already gone through initial safety and effi-
cacy evaluations.

This method doesn’t just save on production costs;
it also opens up new avenues for tackling therapeu-
tic challenges. By uncovering new uses for existing
drugs, we minimize the risks tied to side effects and
safety issues that often come up when developing new
medications[2][3]. Think about drugs like Minoxidil and
Sildenafil,they started out for different purposes but
eventually found new therapeutic roles, adding signif-
icant value to the pharmaceutical industry[2][4][5].

Given the importance of this topic and the rise of ad-
vanced computational techniques especially in numer-
ical linear algebra and the latest strides in machine
learning, we have a real opportunity to make the drug
repurposing process even better. By using machine
learning methods, including algorithms based on neu-
ral networks, we can find hidden patterns in large clin-
ical datasets and pull out relevant information [6, 7].
This makes drug repurposing more efficient. Specif-
ically, numerical linear algebra computations help us
identify drug-disease associations faster and more accu-
rately, and they improve predictions about how effective
a drug might be.

With this in mind, we examined a dataset extracted
using various machine learning techniques to dig out
the necessary information from drugs and diseases. To
find a technique that offers solid accuracy at a lower
cost compared to some existing studies, we evaluated
and compared the WNMFDDA(weighted graph regu-
larized collaborative non-negative matrix factorization
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for drug-disease association prediction) [13] approach
that is state of the art in this domain with various ma-
chine learning algorithms and numerical linear algebra-
based methods. These were our main tools for optimiz-
ing and processing large datasets. Our aim was to pin-
point and introduce a method that excels in accuracy,
speed, and memory efficiency compared to others. By
applying these techniques, we can develop more efficient
and precise computational methods for drug repurpos-
ing, ultimately slashing both research costs and the time
needed to achieve positive clinical outcomes.

2 Related Work

When it comes to predicting how drugs relate to dis-
eases, researchers use a variety of methods, each with
its own techniques to make the most of the available
data. These methods rely on similarities between drugs
and diseases to find new connections and improve drug
repurposing or redesign efforts.

One example is the SAEROF(Sparse Auto-Encoder-
Based Rotation Forest) model [9]. This approach com-
bines a sparse autoencoder with Rotation Forest to
pinpoint drug-disease links. It looks at how similar
drug structures are and how diseases relate semanti-
cally, which helps make more accurate predictions. The
downside, though, is that SAEROF is computationally
heavy, meaning it takes a lot of processing power and
time, especially with large or complex datasets.

Another method is the DDA-SKF(drug–disease asso-
ciations prediction using similarity kernels fusion) model
[10], which uses a similarity kernel fusion technique.
By merging different similarity measures for drugs and
diseases and applying the Laplacian Regularized Least
Squares algorithm, this model performs well even when
there’s not much data. However, it struggles with accu-
racy if the similarity information it relies on is lacking
or incorrect.

Deep learning approaches are also important in this
area. Take the DCNN(Densely Connected Convolu-
tional Networks) model [11], for instance. It uses a
Dense Convolutional Neural Network with attention
mechanisms to find drug-disease associations by spot-
ting hidden patterns in the data. The challenge here
is that DCNN requires a lot of training data and can
be complex to set up, making it hard to use effectively
with small or imbalanced datasets.

There are also models based on matrix factorization.
The SCMFDD(similarity constrained matrix factoriza-
tion) [12] is one such example, which uses similarity con-
straints during matrix factorization. It projects drugs
and diseases into a lower-dimensional space and predicts
their associations based on these similarities. However,
SCMFDD doesn’t perform as well with new or unseen
data, reducing its accuracy in those cases.

More recently, the WNMFDDA [13] method has
gained attention. This model combines non-negative
matrix factorization with graph regularization to find
potential drug-disease links. It starts by calculating
similarities based on drug chemical structures and dis-
ease information, then uses a weighted K-nearest neigh-
bors approach to rebuild association scores. Finally, it
applies matrix factorization and graph regularization to
predict new association. While WNMFDDA is accu-
rate and mathematically robust, it needs a lot of data
and memory, making it costly to compute. Plus, it’s
not very easy to interpret, so there’s interest in finding
methods that keep the accuracy high but use less mem-
ory and compute time while being easier to understand
[13].

Table 1 provides an overview of some recent work in
this domain.

Table 1: Summary of Techniques and Related Works

Ref. Technique and Description

[9] SAEROF: Sparse Auto-Encoder-Based Ro-
tation Forest combines sparse autoencoders
with Rotation Forest to enhance drug-disease
predictions using structural and semantic re-
lationships.

[10] DDA-SKF: Drug–Disease Associations us-
ing Similarity Kernels Fusion merges similar-
ity measures for drugs and diseases, apply-
ing the Laplacian Regularized Least Squares
algorithm for association predictions, espe-
cially useful with limited data.

[11] DCNN: Densely Connected Convolutional
Networks with attention mechanisms iden-
tify hidden patterns in data to predict drug-
disease associations, though it requires sub-
stantial training data.

[12] SCMFDD: Similarity Constrained Matrix
Factorization uses similarity constraints in
matrix factorization to project drugs and dis-
eases into lower-dimensional spaces for asso-
ciation prediction.

[13] WNMFDDA:Weighted Graph Regularized
Collaborative Non-negative Matrix Factor-
ization combines graph regularization with
matrix factorization to predict drug-disease
associations based on chemical and disease
similarities.

Overall, since figuring out drug-disease associations
is still a relatively new challenge, all these methods are
valuable. While creating new techniques is important, it
might be more effective at first to fine-tune the existing
ones to make them faster and less resource-heavy with-
out losing accuracy. These different approaches all aim
to better predict how drugs and diseases are connected,
helping discover new uses for existing drugs.

132



Rafei et al. Optimizing Drug-Disease Association Amirkabir University of Technology, October 23-24, 2024

3 Methodology

In this paper, we aimed to develop a model for accu-
rately predicting drug-disease associations while min-
imizing computational resources. To achieve this, we
compared the Weighted Graph Regularized Collab-
orative Non-negative Matrix Factorization for Drug-
Disease Association Prediction (WNMFDDA), a state-
of-the-art method known for its high accuracy, against
various alternative approaches, including machine learn-
ing algorithms and numerical linear algebra techniques.
Our objective was to identify methods that could
achieve comparable accuracy with reduced memory us-
age and processing time. While WNMFDDA offers ex-
cellent predictive performance, it is computationally in-
tensive. Thus, we explored other methods that could
provide similar accuracy with greater efficiency.

Figure 1 shows flowchart of our methodology.

Start

Dataset

OMIM DrugBank

Methods

Machine Learning

Numerical Linear Algebra

WNMFDDA

Results Comparison

Conclusion

End

Figure 1: General Workflow of the Study

First, we examine the foundational method upon
which the WNMFDDA is based to better understand its
general principles. Although the WNMFDDA method
consumes more time and memory than traditional
NMF, its improved accuracy justifies these costs, espe-
cially since the resource usage figures are comparable.
Therefore, these factors can be overlooked in pursuit of
better model performance.

We conducted a comparative analysis of a framework
of methods. Among these, the method that performed
most closely to the baseline in terms of evaluation crite-
ria was Decision Tree Regressor, which demonstrated
both high accuracy and lower resource consumption
compared to the WNMFDDA method. Additionally,
Decision Tree Regressor offers superior interpretability
over the baseline, a quality that enhances its appeal in
interdisciplinary applications. Consequently, the deci-
sion tree regressor emerged as the most effective method
for this case study.

3.1 Non-negative Matrix Factorization (NMF)

One of the key methods that formed the basis of the ref-
erence method studied is Non-negative Matrix Factor-
ization (NMF) [16]. In this method, the drug-disease as-
sociation matrix V is decomposed into two non-negative
matrices W and H:

V ≈ W ×H (1)

where:

� V : Drug-disease association matrix

� W : Latent features of drugs

� H: Latent features of diseases

3.2 DecisionTreeRegressor

The Decision Tree Regressor [17] is a non-parametric re-
gression method that predicts target values by learning
simple decision rules inferred from the features. This
model recursively partitions the data space into sub-
sets to minimize prediction error, resulting in a tree-
like structure of decisions. By using this approach, it
can capture non-linear relationships without requiring
feature scaling or transformation, making it suitable for
various regression tasks. The model works by iteratively
splitting the dataset into smaller groups based on spe-
cific feature thresholds, resulting in leaf nodes that con-
tain samples with similar target values.

To evaluate the quality of a split, the Decision Tree
Regressor uses criteria like reduction in mean squared
error (MSE). The split is chosen to minimize the MSE
for the resulting child nodes, effectively reducing the im-
purity of the partitions. This reduction in error at each
split is known as the decrease in impurity or information
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gain, and the tree-building process continues recursively
until a stopping criterion is met (e.g., maximum depth,
minimum number of samples per leaf).

The prediction for any input is obtained by traversing
the tree from the root to a leaf node, where the predicted
value is typically the mean target value of the samples
in that leaf:

ŷ =
1

N

N∑
i=1

yi (2)

where:

� ŷ: Predicted value for a given input

� yi: Actual target values within a leaf node

� N : Number of samples in the leaf node

The ability of Decision Tree Regressors to capture
complex, non-linear relationships without needing ex-
tensive pre-processing is a significant advantage. How-
ever, one of the potential drawbacks is the tendency
to overfit, particularly with deep trees. Regularization
techniques, such as setting a maximum depth or min-
imum number of samples per leaf, are commonly em-
ployed to prevent overfitting and improve generaliza-
tion.

The computational complexity of building a Decision
Tree Regressor is influenced by the number of samples
N and the number of features d. At each node, the
algorithm evaluates all possible splits across all features,
which requires O(d · N logN) operations. The factor
N logN comes from sorting the data at each split. If
the tree has T terminal nodes (leaf nodes), the overall
training complexity becomes O(d ·N logN · T ), as this
process is repeated at each level of the tree.

For prediction, the complexity is O(depth), where
”depth” is the depth of the tree. In the worst case,
this depth can be O(N), resulting in a prediction time
complexity of O(N). However, with appropriate regu-
larization (e.g., setting a maximum depth), the predic-
tion complexity can often be reduced to O(logN).

Given that the Decision Tree Regressor algorithm
constructs a tree by selecting splits that maximize the
reduction of mean squared error (MSE) at each node
and offers high interpretability, it can be effectively uti-
lized in applications like drug redesign, where clear in-
terpretations are essential for diverse stakeholders. Ad-
ditionally, the model’s structure allows for easy visu-
alization and analysis of the decision-making process,
providing insights into which features are most influen-
tial in the prediction outcomes.

4 Results and Experiments

4.1 Dataset

For evaluating these methods, we used a validated
dataset containing 1933 confirmed associations between
593 drugs and 313 diseases. These data were ex-
tracted from public sources, DrugBank [14] and On-
line Mendelian Inheritance in Man (OMIM) [15], and
are recognized as the gold standard for predicting drug-
disease associations. The dataset included molecular
features of drugs and clinical information about dis-
eases. After removing duplicate pairs, the final dataset
was used for experiments.

4.2 Model Comparison and Evaluation

To evaluate the performance of the models and compare
them, we used the Mean Squared Error (MSE) metric.
MSE measures the average squared difference between
the actual and predicted values, providing an indication
of how close predictions are to the actual results. It is
calculated using the formula:

MSE = 1
n

∑n
i=1(yi − ŷi)

2 (3)

where yi represents the actual values, ŷi represents
the predicted values, and n is the number of data points.
Lower MSE values indicate better model performance.

For this purpose, we chose the WNMFDDA method
as the reference model and compared the output of
other models against this method. The WNMFDDA
model serves as a baseline for high accuracy, but it is
resource-intensive in terms of memory and execution
time. Other methods, like matrix factorization-based
approaches and certain machine learning algorithms,
were able to approximate the results of the WNMFDDA
model while requiring significantly fewer resources.

The results show that some alternative methods, such
as matrix factorization-based methods and certain ma-
chine learning algorithms, can achieve results close to
the reference model while using less time and memory.
However, we excluded certain methods, like Linear Re-
gression, because they were not accurate enough. These
models failed to capture the associations between drugs
and diseases as effectively as other models, leading to
poorer performance. Specifically, we removed the re-
gression method due to its inaccuracy and the CUR
Decomposition method due to its high processing time
and inefficiency compared to other methods.

The comparisons are visualized through graphs, in-
cluding time charts, memory usage charts, and line
graphs, providing a detailed view of the trade-offs be-
tween time, memory usage, and prediction accuracy.

Table 2 and the results presented in Figures 2, 3
and 4 compare the performance of various methods for
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Figure 2: comparison of Time and Memmory usage
of WNMFDDA and Numerical Algebras methods

Figure 3: comparison of Time and Memmory usage
of WNMFDDA and Machine Learning methods

Figure 4: Comparison of MSE relative to the
WNMFDDA method

Table 2: Performance Metrics for Baselines

Method Name Memory Usage (MiB) MSE Time (s)

WNMFDDA [13] 266.50 - 8.7815
Singular Value Decomposition (SVD) 258.45 0.0037 0.0757
Non-negative Matrix Factorization (NMF) 254.69 0.0036 0.0647
Principal Component Analysis (PCA) 256.01 0.0038 0.1430
Ridge Regression 260.41 0.0099 0.0482
Alternating Projections 260.41 0.0101 0.1231
Stochastic Gradient Descent (SGD) 261.00 0.0035 12.4861
Matrix Factorization (MF) 261.04 0.0037 0.0350
Robust PCA 261.04 0.0038 0.0440
Randomized Matrix Factorization 261.04 0.0037 0.0536
Probabilistic Matrix Factorization (PMF) 261.20 0.0004 224.0376
Lasso 8.03 0.0003 0.9046
ElasticNet 8.02 0.0003 0.6957
Ridge 8.84 0.0001 0.1134
Random Forest Regressor 0.82 0.0001 10.1102
Bagging Regressor 0.87 0.0001 0.8674
Extra Trees Regressor 0.79 0.0001 9.7420
Decision Tree Regressor 0.66 0.0001 0.1410

predicting drug-disease associations from different as-
pects, including accuracy (using the MSE metric), mem-
ory consumption, and execution time, against the WN-
MFDDA method.

The WNMFDDA method is considered a baseline
model due to its high accuracy and ability to identify

complex relationships. This method utilizes a combi-
nation of matrix factorization and graph-based settings
to uncover intricate patterns in drug and disease data.
However, its significant memory consumption (266.50
MiB) and relatively high execution time (nearly 9 sec-
onds) indicate that despite its desirable accuracy, its
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computational cost is substantial, making it possibly
less optimal in cases where lower processing resources
and faster speed are required.

Nonetheless, several alternative methods have per-
formed well with similar accuracy but with lower mem-
ory and time consumption compared to WNMFDDA, as
shown in the second table and the corresponding figures.
For example, Decision Tree Regressor achieve predict
close to that of WNMFDDA and, in some cases, even
lower MSE values. These models, by reducing process-
ing resource consumption, are suitable choices for sce-
narios where model accuracy is important but less mem-
ory and time are required. The Decision Tree Regressor
provides one of the best balances between accuracy and
efficiency, as can be seen in Figure 3. Figure 4 clearly
shows that this method has been able to reach an accu-
racy close to the baseline method using fewer processing
resources and even demonstrating better performance in
scenarios with limited resources by reducing MSE.

This comparison indicates that while WNMFDDA re-
mains a standard method with high accuracy in drug-
disease predictions, methods such as Decision Tree Re-
gressor proven to be more efficient in terms of time and
memory consumption. This allows us to use models
with lower costs in situations where time and processing
resources are of high importance without significantly
compromising prediction accuracy.

5 Conclusion

This study aimed to findan efficient model for predict-
ing drug-disease associations, balancing accuracy and
computational resources. While the Weighted Graph
Regularized Collaborative Non-negative Matrix Factor-
ization (WNMFDDA) demonstrated high accuracy, its
significant computational demands limit its practical
applicability.

In contrast, alternative methods like the Decision
Tree Regressor achieved comparable MSE with reduced
memory and execution time, making them more suitable
for resource-constrained environments. Our findings in-
dicate that selecting the right model based on accuracy
and resource availability can enhance performance in
drug-disease prediction tasks. Future research should
explore hybrid models that combine the strengths of
these approaches for even better efficiency and accuracy.
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