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Abstract

Temporal action localization (TAL) in untrimmed
videos poses a significant challenge due to the accurate
determination of action timing and type within noisy or
irrelevant content. In this paper, we introduce SeqAt-
tNet, an innovative end-to-end network that aims to
advance TAL performance through novel approaches.
Our model combines attention mechanisms with a com-
pact two-dimensional sequential network and utilizes 3D
input aggregation to optimize accuracy and computa-
tional efficiency. SeqAttNet outperforms existing meth-
ods, achieving over 87% greater efficiency on the Activ-
ityNet dataset while being over 70 times smaller com-
pared to baseline. Despite its compact nature, SeqAt-
tNet maintains competitive accuracy, surpassing larger
models such as TriDet in overall efficiency and achiev-
ing more than twice the efficiency on the ActivityNet
dataset. Our findings demonstrate that SeqAttNet ef-
fectively balances performance with computational cost,
delivering high accuracy while notably reducing net-
work complexity. This makes it a valuable tool for
practical TAL applications, where both precision and
efficiency are essential.

Keywords: Temporal action localization, efficient at-
tention, and Action recognition

1 Introduction

Human action recognition is essential for applications
like surveillance, behavior analysis, and video retrieval.
While significant progress has been made, detecting
actions in untrimmed videos remains a major chal-
lenge due to the need for accurate temporal localiza-
tion within noisy or irrelevant content. Temporal ac-
tion localization (TAL) requires both the identification
of action boundaries and the action type, which is cru-
cial for tasks like video retrieval. Existing TAL methods
struggle with balancing performance and computational
complexity, making them less practical for real-world
applications.
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Recent advances in attention mechanisms have im-
proved accuracy by allowing models to focus on relevant
segments of data. However, these gains often come at
the cost of increased model complexity and higher com-
putational demands.
In this paper, we propose SeqAttNet, a compact and
efficient end-to-end network for TAL that integrates at-
tention mechanisms and utilizes 3D input aggregation.
Our model combines a two-dimensional sequential net-
work with attention-based modules to maintain com-
petitive accuracy while significantly reducing network
size. Key contributions include:

• Development of an efficient, end-to-end TAL net-
work

• Integration of attention mechanisms for enhanced
accuracy

• Introduction of 3D input aggregation to maximize
efficiency

• Introduction of a two-dimensional sequential net-
work for computationally efficient processing

• Significant reduction in network complexity

The remainder of this paper is structured as follows:
Section 2 reviews related work. Section 3 details the
overall method and specific techniques used. The eval-
uation and results are presented in Section 4. Finally,
the paper concludes in Section 5, where we summarize
our findings and discuss their implications.

2 Related Work

Temporal action localization (TAL) has seen numerous
advancements aimed at improving the precision of ac-
tion boundary detection. Kong et al. [15] introduced
the Boundary Likelihood Pinpointing (BLP) network,
which enhances boundary accuracy through probabilis-
tic approaches. However, the reliance on predefined an-
chors limits its flexibility, particularly for actions with
extreme durations. To address this, Yang et al. [8] pro-
posed A2Net, combining anchor-based and anchor-free
mechanisms to detect actions of varying lengths, offer-
ing greater adaptability without anchor constraints.
Wang et al. [13] presented the Multi-Level Temporal
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Pyramid Network (MLTPN), which improves feature
discrimination through a pyramid architecture but at
the cost of increased computational demands, poten-
tially limiting its use in real-time applications. Graph-
based methods have also contributed to TAL. Zeng et
al. [11] introduced the Proposal-based Graph Convo-
lutional Network (P-GCN), which uses graph convo-
lutional networks to model relationships between ac-
tion proposals, improving classification and localization.
Similarly, Wang et al. [7] and Xu et al. [10] actively
employ graph-based architectures to model temporal
context and improve action localization performance.
However, despite the improvements in feature represen-
tation and detection accuracy, the complexity of these
graph structures results in significantly higher computa-
tional demands, making them less efficient for real-time
or resource-constrained environments.
Liu and Wang [12] introduced the Progressive Boundary
Refinement Network (PBRNet), which addresses vague
action boundaries through a three-step cascaded detec-
tion process. PBRNet achieves state-of-the-art perfor-
mance but involves a multi-stage refinement process.
Liu et al. [17] explored the impact of end-to-end learn-
ing on temporal action detection, finding that end-to-
end training improves performance. However, the si-
multaneous optimization of both the video encoder and
detection head increases the model’s overall computa-
tional burden.
Attention-based models have gained prominence since
the introduction of “Attention Is All You Need” by
Vaswani et al. [14]. Vaudaux-Ruth et al. [5] introduced
SALAD, which incorporates a self-assessment learning
approach that functions as an attention mechanism.
SALAD improves detection accuracy by refining the
focus on relevant frames, though it also requires ad-
ditional computational resources due to the dual-task
learning process. Zhao et al. [1] introduced SegTAD,
reformulating TAL as a semantic segmentation task,
achieving high accuracy with fine-grained supervision.
Transformer-based models like TadTR [16] and RTD-
Net [6] have further simplified the TAL pipeline but still
demand significant computational power due to their re-
liance on attention mechanisms.
In [9], Mokari et al. developed an End-to-End network
for parallel error estimation and classification, enhanc-
ing boundary precision. Building on these efforts, we
introduces the SeqAttNet, which incorporates attention
mechanisms into a simplified and efficient architecture,
optimizing TAL performance while reducing computa-
tional load. We use [9] as a baseline for comparison and
further improve accuracy and efficiency through inno-
vative design choices.

3 Approach

3.1 Problem Definition

The task of Temporal Action Localization (TAL) in-
volves detecting actions in untrimmed videos by deter-
mining the time intervals of action occurrences. Given
a sequence of RGB frames I, the objective is to detect
the actions within these frames, represented as action
proposals Ψ = {φn = (tns, tne, Cn, Sn)}, where tns and
tne indicate the start and end times of an action. Cn

classifies the action type, and Sn provides a confidence
score for each detection.
Our approach focuses on generating action proposals,
estimating timing boundary errors, and classifying ac-
tions within a unified end-to-end framework. The key
components of our method, including 3D input aggrega-
tion, temporal attention network and Two-Dimensional
Sequential network, are designed to enhance both accu-
racy and efficiency.

3.2 3D Input Amassment

In our approach, video frames are first transformed into
feature sequences using feature extraction techniques,
representing the content within each frame. The feature
vector xi ∈ RF at time step i captures the information
from the corresponding frame, where F is the dimension
of the feature vector.

Given the high dimensionality of these feature vec-

Figure 1: Preparing 3D Input.

tors and the large number of frames in each video, this
results in highly complex input data. To avoid the
need for overly large networks, we propose a technique
called 3D Input Amassment, which reduces network size
and computational requirements by converting the in-
put into three-dimensional form and processing it with
two-dimensional network structures.
In this approach, instead of concatenating feature vec-
tors for each candidate proposal, we first create a three-
dimensional feature space, as illustrated in Figure 1.
For each candidate proposal, covering a specific time
interval of the video, we align the feature vectors xi

corresponding to the frames within that interval along
the time axis, forming a two-dimensional feature map.
These maps are then aggregated along the third dimen-
sion to create a 3D input for the subsequent stages.
Since candidate proposals vary in length, the resulting
three-dimensional input is zero-padded along the time
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axis to ensure uniform dimensions across proposals. The
final 3D input X, which contains the 2D feature maps of
all proposals, is defined as X ∈ RN×F×T , where N rep-
resents the number of proposals, F is the feature vector
dimension, and T is the temporal length.
As shown in Figure 2, this 3D input allows us to ap-
ply the same temporal attention network across differ-
ent content dimensions, enabling efficient and accurate
analysis of the action proposals.

Figure 2: Applying Same Temporal Attention Network
into different content dimension of 3D input.

3.3 Temporal Attention Network

To enhance efficiency while maintaining simplicity,
many recent architectures leverage attention-based net-
works to prioritize crucial features within the input
data. In our proposed method, we also incorporate at-
tention mechanisms to control the influence of different
features in the input, highlighting the more significant
ones. Given that the input data spans multiple frames,
representing various ways actions unfold over time, it is
logical to assume that not all time intervals contribute
equally to determining the action type and its bound-
aries.
In our approach, we employ the temporal attention net-
work that operates along the time axis, focusing on
the temporal relationships between frames. Since our
input is organized in a three-dimensional structure—
separated by time and content dimensions—the atten-
tion mechanism is applied exclusively in the temporal
direction. Instead of assigning an individual attention
network for each content dimension, we use a unified
attention network across the entire time axis for each

content, reducing the overall complexity of the network.
This temporal attention network is a linear structure
with dimensions T × T , where T is the number of time
steps. The attention network computes the importance
of each time step in relation to the others, ensuring that
the influence of content across different times is cap-
tured uniformly. As illustrated in Figure 2, the same
attention network is applied to all content dimensions
at each time step.
This temporal attention mechanism is utilized sepa-
rately for classification and temporal error estimation,
as the importance of different values within the 3D input
varies based on the application. The temporal attention
improves the accuracy of action detection by selectively
focusing on the most relevant time intervals for each
task.

3.4 Two-Dimensional Sequential Network

In this section, we present an additional technique
designed to optimize the overall structure: the
Two-Dimensional Sequential Network. Rather than
employing a complex network that simultaneously
processes the interactions between both content and
time dimensions, we introduce a sequential structure
that handles these dimensions in two distinct stages.
This two-stage approach considers the time dimension
and content dimension separately, which simplifies
the computational process and reduces the complexity
of the model. Since the two parts of the sequential
network handle the input from different directions, we
refer to it as a Two-Dimensional Sequential Network.

The technique is applied independently for both

Figure 3: Two-Dimensional Temporal Error Estimation
Network.

Figure 4: Two-Dimensional Classification Network.

classification and temporal error estimation, resulting
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in two distinct network structures, as shown in Figures
3 and 4. In the first stage, the network processes the
time dimension, utilizing a linear layer to compute
an intermediate variable Hi for the intermediate
layer. According to Eq. (1), Hi is a weighted linear
combination of the values of the i-th content across
different time steps, followed by the ReLU activation
function. The input to this linear temporal layer is
the original input, modified by the attention weights,
denoted as AX.

Hi = ReLU

 T∑
j=1

wj ·AXji

 (1)

In this stage, identical weights are used across all con-
tent dimensions, meaning that the effect of content val-
ues at different time steps is uniformly dependent on
the temporal relationships. In the second stage of the
network, the content dimension is processed, generating
the final output variables through a linear layer based
on the intermediate content values from the previous
stage.
This sequential processing approach simplifies the inter-
actions between time and content dimensions, reducing
the overall model complexity. By decoupling the tem-
poral and content relationships into separate stages, we
achieve a more efficient network structure while main-
taining the accuracy and performance of the model.

3.5 SeqAttNet Overall Architecture

SeqAttNet is designed to efficiently handle Temporal
Action Localization (TAL) using a combination of spe-
cialized modules. Each component is carefully crafted to
balance accuracy with computational efficiency, ensur-
ing an end-to-end structure capable of generating action
proposals, estimating temporal boundaries, and classi-
fying actions in untrimmed videos. The overall architec-
ture of SeqAttNet is shown in Figure 5, where the differ-
ent blocks are color-coded to distinguish their functions.
The key stages of SeqAttNet are as follows:

• Proposal Generation: Produces candidate action
proposals.

• Temporal Error Estimation: Refines proposal tim-
ing with error correction.

• Action Classification:Assigns action labels to pro-
posals.

• Inference and Post-processing: Filters and refines
final action proposals.

Detailed descriptions of each module follow.

Figure 5: The overall architecture of proposed method,
SeqAttNet.

3.5.1 Proposal Generation

The Proposal Generation module is tasked with identi-
fying candidate time intervals where actions occur. In-
spired by the framework in [9], the proposal generation
process evaluates the temporal structure of the input
video from two perspectives: temporal evaluation and
proposal evaluation.
In temporal evaluation, the likelihood of an action start-
ing or ending at each time point is estimated, while
proposal evaluation generates a Confidence matrix that
predicts the probability of an action starting at a given
time and lasting for a specific duration. This matrix
helps identify candidate proposals, which are then used
in subsequent stages. The structure of the evaluation
module is detailed in Table 1.

Table 1: Details of evaluation module architecture.
Layer Kernel Stride Dimension Activation function Output

Base Module
Conv1D 3 1 256 Relu 256× T
Conv1D 3 1 256 Relu 256× T

Temporal Evaluation Module
Conv1D 3 1 256 Relu 256× T
Conv1D 1 1 1 Sigmoid 1× T

Proposal Evaluation Module
Conv1D 3 1 256 Relu 256× T

Boundary Matching N -32 256× 32× D × T
Conv3D 32,1,1 32,0,0 512 Relu 512× 1× D × T
Squeeze 512× D × T
Conv2D 1,1 0,0 128 Relu 128× D × T
Conv2D 3,3 1,1 128 Relu 128× D × T
Conv2D 3,3 1,1 128 Relu 128× D × T
Conv2D 1,1 0,0 2 Sigmoid 2× D × T

3.5.2 Error Estimation

In the temporal error estimation step, the temporal er-
rors δsi and δei for each candidate proposal’s start and
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end times are calculated. This is done using a two-
dimensional sequential network combined with a tem-
poral attention mechanism. The error estimates allow
the model to refine the start and end points of the de-
tected action
The attention network first calculates attention weights
for each time step, which are applied to the input fea-
tures to generate weighted inputs. The weighted inputs
then pass through a sequential network to estimate the
temporal errors.
Simultaneously, using the ground-truth data, the exact
temporal errors dsi and dei are calculated as:

dsi =
tgs − tis

T
, dei =

tge − tie
T

where tgs and tge are the ground-truth start and end
times, and tis and tie are the predicted start and end
times of the proposal.

Table 2: Details of Time Error Estimation architecture.
Layer Dimension Activation function Output

Attention Network
Linear T × T - Attention Map

Production T × T - AXT×F

Two-Dimensional Sequential Network
Linear T × 1 Relu HF

Linear F × 2 tanh δsi and δei

3.5.3 Classification

The Action Classification module is responsible for as-
signing action labels to the proposals generated in the
earlier stages. Like the error estimation module, the
classification network applies an attention map to the
3D input features, highlighting the most important con-
tent for classification. A two-dimensional sequential
network then generates the classification score Cscorek,
which indicates the likelihood of an action belonging to
class k.
The architecture of the classification module is pre-
sented in Table 3. During the training phase, ground-
truth proposals are used to prevent the propagation of
errors from the proposal generation stage, while in the
inference phase, the proposals generated by the model
are classified.

3.6 Inference

In the inference stage, the final set of action proposals
is generated and scored. Each proposal is scored based
on both the proposal confidence P and the classification
score CscoreCi using the following equation:

Si = P × CscoreCi

Table 3: Details of Classification architecture.
Layer Dimension Activation function Output

Attention Network
Linear T × T - Attention Map

Production T × T - AXT×F

Two-Dimensional Sequential Network
Linear T × 1 Relu HF

Linear F ×Nc Logsoftmax CscoreNc

where Si represents the overall confidence for proposal
i. The proposals with the highest scores are selected as
the final set of action detections.

3.6.1 Post Processing

Since only one action occurs at any time, temporal over-
laps between action proposals are irrelevant. Therefore,
to reduce false positives, Soft Non-Maximum Suppres-
sion (SNMS) [4] is applied to the overlapping proposals,
reducing the likelihood of selecting less probable ones.
SNMS adjusts the confidence scores of proposals with
temporal overlaps, ensuring that the most likely propos-
als are chosen.

3.7 Training

The details related to the training of the proposed struc-
ture are examined in this section. These details include
the preparation of the data required for training the
model and the loss function used.

3.7.1 Training Data

The training data for the network comprises annotated
intervals of action instances with corresponding class
labels per video. Sequence labels GS and GE ∈ RT ,
generated for the temporal boundaries of proposals, are
employed in temporal evaluation training.
For each action instance in the ground truth φg =
(ts, te), where the duration dg = te − ts, the start and
end regions are delineated as:

rS = [ts −
dg
10

, ts +
dg
10

] (2)

rE = [te −
dg
10

, te +
dg
10

] (3)

For every time step tn, the temporal region is defined
as:

rtn = [tn − df
10

, tn +
df
10

] (4)

where df = tn− tn−1. We compute the maximum inter-
section over region ratio for each temporal region with
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start and end regions independently. These values are
represented as gstn and getn for the start and end ground-
truth probabilities of tn. Thus,

GS = {gstn}
T
n=1 (5)

GE = {getn}
T
n=1 (6)

To establish the label map GC ∈ RD×T for pro-
posal evaluation, serving as the ground-truth for the
confidence matrix, we compute the Intersection over
Union (IoU) between each hypothetical proposal and
the ground-truth instances. The maximum IoU values
are then utilized to populate the GC matrix. We con-
sider all conceivable proposals, starting from every tem-
poral point and spanning diverse durations.

3.7.2 Loss function

The loss function definitions for all modules are inte-
grated to enable an end-to-end network training pro-
cess. This combined loss is represented by Eq. (7):

L = Lev + λcl · Lcl + λer · Ler + λ2 · L2(Θ) (7)

In this equation, Lev is the evaluation loss, Lcl repre-
sents the classification loss, and Ler indicates the mean
squared error for the temporal error estimation outputs.
The regularization term L2 applies norm-2 regulariza-
tion to the parameters of the overall loss function.
The individual loss functions are defined as follows. The
Cross Entropy loss, used for Lcl, is given in Eq. (8).
Here, B denotes the batch size, yi,c ∈ {0, 1} is the bi-
nary ground truth label, and Pi,c ∈ [0, 1] is the predicted
action probability for the i-th proposal in the c-th action
class:

Lcl =
1

B

B∑
i=1

Nc∑
c=1

yi,c log(Pi,c) (8)

The evaluation loss Lev comprises Lte, the temporal
evaluation loss, and Lpe, the proposal evaluation loss
for confidence matrices. Lte is computed as shown in
Eq. (9), where PS and PE represent the predicted start
and end probability sequences:

Lte = Lbl(PS , GS) + Lbl(PE , GE) (9)

Here, Lbl(P,G) refers to the weighted binary logistic
regression loss, detailed in Eq. (10):

1

lw

lw∑
i=1

(α+ · bi · log(pi) + α− · (1− bi) · log(1− pi))

(10)

In this formula, bi is the binary equivalent of gi after
applying a threshold θ = 0.5. The weights α+ and α−

are computed using Eq. (11) and Eq. (12), with lw rep-
resenting the temporal length of the video:

α+ =
lw
l+

(11)

α− =
lw
l−

(12)

where

l+ =
∑

bi (13)

l− = lw − l+ (14)

The Proposal Evaluation module employs two different
loss functions to produce two distinct confidence ma-
trices: Regression Map MCR and Binary Classification
Map MCC . These confidence matrices are used to assess
proposals as previously explained:

Lpe = LC(MCC , GC) + λR · LR(MCR, GC) (15)

Here, LC is Lbl, and LR is the norm-2 regularization.
The evaluation loss function Lev is defined in Eq. (16):

Lev = Lpe + λte · Lte (16)

Finally, the total loss function is defined by combining
all individual losses, as specified in Eq. (17). The pro-
posed end-to-end network is trained by optimizing L:

L = Lpe + λte · Lte + λcl · Lcl + λer · Ler + λ2 · L2(Θ)
(17)

4 Experiment

In this section, we evaluate the performance of our pro-
posed end-to-end network, comparing it with state-of-
the-art methods, and provide a detailed analysis of the
results.

4.1 ActivityNet Dataset

The ActivityNet dataset [3] is a crucial collection
of videos that aids in comprehending human actions
through an extensive array of untrimmed footage. This
dataset covers 648 hours and includes 200 varied action
classes, with around 100 videos per class, amounting
to approximately 23,000 activity instances for analysis.
These classes encompass a wide range of everyday activ-
ities. ActivityNet is our dataset due to its depiction of
various daily activities—most untrimmed videos feature
multiple action instances, presenting the dual challenges
of undefined action boundaries and numerous action in-
stances for our method to address.
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4.2 Evaluation Metric

We use the Average Precision (AP) metric to measure
performance, calculated for each action class C using
Eq. (18). Mean Average Precision (mAP) is derived
by averaging AP values across all classes for different
Temporal Intersection over Union (tIoU) thresholds, as
shown in Eq. (19).

AP (c) =

∑n
k=1(prec(k)× rel(k))∑n

k=1 rel(k)
(18)

mAP =
1

Nc

Nc∑
c=1

AP (c) (19)

4.3 Setup

The model’s hyperparameters were fine-tuned through
limited validation evaluations, with final values listed
in Table 4. These values were used for the final perfor-
mance evaluations.

Table 4: Hyper parameters setting.

Loss Function Training
λR 10 Batch size(Nb) 16
λte 1 Learning rate 0.001
λcl 1 epoch 5
λer 1 - -
λ2 0.001 - -

4.4 Performance

We assessed our method on the ActivityNet dataset and
compared it to recent approaches. As shown in Tables 5,
the efficiency of the proposed structure is significantly
higher than all existing approaches. For instance, al-
though the TriDet [2] method offers higher accuracy
than all other methods, it utilizes a network more than
three times larger than the proposed structure, result-
ing in lower overall efficiency.
The comparison with the baseline [9] reveals that incor-
porating attention mechanisms alongside the proposed
novelties not only preserved the accuracy of the struc-
ture but also led to increased accuracy. This, combined
with a substantial reduction in network size—over 70
times smaller—resulted in an approximately 87% im-
provement in overall efficiency.

The results indicate that the proposed structure
achieves a highly optimized design, maintaining network
performance while significantly reducing the network’s
size.

Table 5: Temporal action localization results on valida-
tion and testing set of ActivityNet v1.3 where threshold
for mAP is changed from 0.5 to 0.95 with 0.05 step
(mAP@tIoU).

Methods Param. @0.95 @0.75 @0.5 Average Ave/Param
PBRNet [12] 89M 8.98 34.97 53.96 35.01 0.39
RTD-Net [6] 32M 8.61 30.68 47.21 30.83 0.96
E2E [17] 36M 7.84 33.26 48.97 32.65 0.9
TriDet [2] 16M 8.4 38.0 54.7 36.8 2.3
Baseline [9] 367M 5.18 28.39 37.88 25.28 0.06
SeqAttNet (Ours) 5M 6.17 29.85 39.6 26.38 5.27

To further evaluate the proposed method, several pre-
dicted samples are shown in Figure 6. As observed,
the action class and the overall duration have been cor-
rectly identified, with some boundaries being highly pre-
cise. However, in some instances, despite a good overlap
with the ground truth data, the boundaries differ by a
few seconds from the exact action boundaries. While
these discrepancies may be expected given the video
quality, improving the accuracy of boundary detection
could significantly enhance the overall performance of
the method.

Figure 6: True-Positive samples of predictions.

5 Conclusion

In this paper, we introduced SeqAttNet, a novel and
efficient network designed for Temporal Action Local-
ization (TAL), which integrates attention mechanisms
with 3D input amassment to form a compact Two-
Dimensional Sequential Network. Our proposed ar-
chitecture significantly reduces the computational com-
plexity and network size while maintaining strong per-
formance in action classification and temporal error esti-
mation. Compared to state-of-the-art methods, SeqAt-
tNet achieves a notable improvement in the accuracy-
to-parameters ratio, as demonstrated by experiments
on the ActivityNet dataset. The results show that Se-
qAttNet outperforms most current methods in terms of
efficiency, achieving competitive accuracy while using a
fraction of the parameters. Specifically, SeqAttNet re-
duces the number of network parameters by more than
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70 times compared to the baseline, leading to an 87%
improvement in efficiency on the ActivityNet dataset.
While the network delivers precise action class identifi-
cation and overall duration estimation, some minor dis-
crepancies remain in boundary predictions. These could
be further addressed by refining boundary detection
techniques, potentially enhancing the method’s over-
all performance. Nevertheless, SeqAttNet represents a
highly optimized solution for TAL tasks, offering a bal-
ance of accuracy and computational efficiency, making
it suitable for real-world applications where both per-
formance and resources are critical considerations.
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