
Transfer Time Reduction for Offloading in the Mobile Edge Computing using
Machine Learning

Sorayya Gharravi∗ Seyed Morteza Babamir†

Abstract

Machine learning can be used to support and optimize
operations in edge computing. ML approaches can be
used to find patterns in workloads and then use those
patterns to improve transfer time, execution time, and
response time. Mobile edge computing (MEC) has cre-
ated a suitable environment for time-sensitive applica-
tions and mobile devices. MEC provides services with
very low latency compared to the cloud environment.
However, due to the time-sensitive nature of the work
in the MEC environment and the explosive growth of
devices in this environment in the last few years, we
still face increased response time and user dissatisfac-
tion. To solve this problem, we need to improve the
performance of offloading tasks to edge servers, that is,
by finding a suitable edge server to offload tasks and
reducing the time of transferring tasks to edge servers.

In this paper, we use machine learning in mobile edge
computing to optimize the computational offloading op-
eration to reduce the transfer time and response time.
Comparing the proposed method with other proposed
methods, the proposed method has a significant im-
provement in terms of transfer time.
Keywords: Deep Reinforcement Learning, Off Load-
ing, mobile edge computing, Response time, Internet of
Things (IoT)

1 Introduction

Machine learning (ML) approaches are suitable for use
in various difficult cases and fields, such as resource
management in cloud computing and edge computing.
Edge computing has rapidly infiltrated various scien-
tific, commercial, social, etc. applications, and has be-
come an integral part of human life. The connection
of smart mobile devices to cloud computing in 5G net-
works has led to the emergence of a new concept called
mobile cloud computing (MCC). However, due to the
time-sensitive nature of most mobile phone applications
and the remoteness of cloud servers to process the re-
quests of these applications and increasing the response

∗Department of Software Engineering University of Kashan
Kashan, Iran, S.gharravi@grad.kashanu.ac.ir

†Department of Software Engineering University of Kashan
Kashan, Iran, babamir@kashanu.ac.ir

time of environment MCC, Given that the main reason
for the emergence of the mobile edge computing envi-
ronment is to enable low-latency processing and accept-
able response time for time-sensitive applications at the
edge of mobile networks, the criterion of task transfer
time to edge servers in this environment is of particu-
lar importance. However, with the unprecedented in-
crease in mobile devices in the mobile edge computing
environment that want to use edge servers to perform
their tasks, and the mobility of these devices, the time
to transfer tasks to edge servers and the length of the
task queue to use edge server resources for processing
increased, which, given the shortage of edge server re-
sources and the time-sensitive nature of most tasks in
the MEC environment, increased task execution time
and user dissatisfaction. Articles have presented meth-
ods for reducing the transfer time in offloading opera-
tions on edge servers, which is still relevant with the
increasing number of devices in the MEC environment.

In this paper, we propose an optimal DRL-based of-
floading strategy for computing tasks in a mobile edge
computing environment to reduce transmission delays
and thus reduce response time. Of course, this opti-
mization is performed in two parts: In the first part, it
is first determined whether the tasks are to be processed
on the mobile device that generated them, or offloaded
to edge servers for processing. In the second part, if the
decision is made to offload tasks to edge servers, the
most appropriate edge server for processing is selected,
taking into account user mobility and the criterion of
reducing transmission time.

2 Background Knowledge

In this section, we explain the main concepts presented
in the paper.

2.1 Mobile Edge Computing Environment

Mobile edge computing utilizes the network edge (the
connection or interface between the device and the local
network and the internet) to extend cloud computing
services to mobile base stations. Edge servers (devices
that provide the entry point to the network) are primar-
ily located at base stations, near the network edge. Edge
servers perform the production tasks of mobile devices.

113

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

Mobile edge computing supports 3G/4G/5G technolo-
gies, wired networks, and wireless networks [11]. As
shown in Figure 1, mobile edge computing technology
uses edge sites to place computing, storage, and network
resources close to users. Edge servers consist of one or
more physical machines to provide services. Each edge
server has a specific range to provide services, and users
within this specific distance can connect to this edge
server. And receive services with low latency [10].

Figure 1: Architecture of the MEC environment

2.2 Mobility in the MEC Environment

Mobility is an essential 5G scenario. The MEC envi-
ronment also benefits from 5G network services and can
provide services to various types of mobile and portable
devices. Therefore, different devices that generate dy-
namic traffic can use these services, connect to edge
servers, and move between edges. Figure 2 shows sev-
eral methods for service operations. Ultimately, our
proposed approach supports bot h Case1, Case2, Case
3 and Case 4.

2.3 Task Offloading in Mobile Edge Computing En-
vironment

Offloading computational tasks is a fundamental oper-
ation in the mobile edge computing environment, so
that applications that require more processing power
and storage space than the resources of mobile devices
can use the resources of edge servers, thereby reducing
processing time and response time [8]. In the mobile
edge computing environment, as shown in Figure 3, mo-
bile devices offload computational tasks to edge servers
for processing instead of cloud servers, thereby reducing
the processing latency and response time. The decision
to offload tasks to edge servers needs to consider the
latency metric, because mobile device applications are
sensitive to latency.If the response delay is high, it is
not acceptable to the task requesters, and may not be

acceptable because the response was not received within
the specified time [6].

Figure 2: Mobility in the MEC environment

 As a result, offloading to edge servers must be reliable
in terms of response time latency. If the demand for of-
floading tasks from mobile devices to edge servers for
processing increases, the waiting time, processing time,
and consequently the response time will increase, which
is not acceptable to users at all. Therefore, optimiz-
ing offloading operations to achieve acceptable response
time is a requirement of the mobile edge computing en-
vironment. Both mobile devices and edge servers (par-
tial offloading) need to cooperate in processing tasks [5].
The mobility of users and mobile devices in the mobile
edge computing environment has presented a serious
problem for offloading tasks to edge servers, which is:
finding the most suitable edge server to offload compu-
tational tasks with lower transmission delays. In other
words, during the offloading operation of computational
tasks, the most suitable edge server should be selected
in terms of distance, resources, bandwidth, etc. to re-
duce transmission delays and response time by consid-
ering the mobility of users and mobile devices [9]. We
used the DRL algorithm to optimize the computational
offloading operation in the proposed method.

2.4 DRL Algorithm

Machine learning (ML) is a program that provides the
ability to learn automatically from data and make de-
cisions. RL is a branch of machine learning in which
an agent learns how to behave by taking actions, build-
ing perceptions, and observing the results in the envi-
ronment. The combination of the RL algorithm with
the deep learning technique has created a stronger al-
gorithm called DRL. The DRL algorithm is one of the
methods used to solve loading and scheduling problems
at different levels of the cloud environment [9].

114

Gharravi et.al. Transfer Time Reduction for Offloading... Amirkabir University of Technology, October 23-24, 2024

Figure 3: Offloading computational tasks in the mobile
edge computing environment

3 Article Contributions

• In the proposed method, the input request is first
checked to see if it can be executed on the mobile
device. If the result is positive, it will be selected
without any transfer time on the mobile device.

• If there is a need to load tasks onto edge servers,
the appropriate edge server is selected taking into
account the criteria of transfer time, resources, and
bandwidth.

• The superiority of the proposed method in terms of
transfer time delay over other methods presented in
this field is shown in the evaluation section based
on different conditions.

4 Previous Work Related to the Research Topic

The articles (Table 1, rows 1-10) have proposed various
methods such as machine learning, deep learning, evo-
lutionary algorithms, etc. to reduce the transmission
latency of computational unloading operations.

5 MEC Environment Formulation

To implement the MEC environment, we consider the
following models.

A. System Model:

The models of mobile devices and edge servers [12] are:

• Set of mobile devices: D={1, 2, . . ., d}

• Set of edge servers: S={1, 2, . . ., s}

• Set of time slots: T={1, 2, . . ., t}

• Duration of each time slot: ∆

Task Model The task model and its parameters [12] are:

• Taskd(t): A task from device d at the beginning of
time slot t.

• Taskd(t)=0: Device d does not enter a new task.

• Size_Taskd(t): Number of task bits (task size)
Taskd(t).

B. Offload decision:

The offload decision model and its parameters are:

• Offload_Taskd(t)=0: Process Taskd(t) on the mo-
bile device.

• Offload_Taskd(t)=1: Process Taskd(t) on the edge
server.

• Size_Taskd(t) (Offload_Taskd(t)): Number of bits
entered in the mobile device d transmission queue.

• Size_Taskd(t)(1 – Offload_Taskd(t)): Number of
bits entered in the mobile device d computation
queue.

• Offload_Taskd,s(t) = 1: Offload Taskd(t) on the
edge server s.

• Offload_Taskd,s(t) = 0: Do not offload Taskd(t) on
the edge server s.∑

d∈D

(
Offload_Taskd,s(t) = 1(Offload_Taskd(t) = 1)

)
Each task can be offloaded to an edge server.

C. Transmission queue:

Transmission queue parameters and its parameters [12]
are:

• FIFO: First-in, first-out transmission queue.

• |Hd,s|2: Channel gain from device d to edge node
s.

• PW: Device transmission power.

• W: Bandwidth allocated to a channel

• x2: Received noise power at the edge server.

• Ratetrand,s = Wlog2

(
1 +

|Hd,s|2PW
x2

)
: Transfer rate

from device d to edge server s (bits per second).

D. Edge Server Model:

The edge server model and its parameters are:

• Taskedged,s (t): Task index in the transmission queue.

• Size_Taskedged,s (t)) = Size (Taskedged,s (t)) : If the
task Taskedged,s (t) be placed in the corresponding
queue at time t.

• Size_Taskedged,s (t): Number of bits entered by the
task index in the transmission queue.

115

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

Table 1: Computational Offloading in Mobile Edge Computing Environment
Paper Purpose of the Article Method Used Tool Used Data Set Evaluation

Criteria
Benefits Open Problem

1 [8] (2021) Providing a computational
offloading method and re-
ducing transmission delay
and reducing energy con-
sumption.

Reinforcement
Learning

Python pro-
gramming
language.

NavegaporMadrid:
http://www.
emtmadrid.es

Response Time Reduce Trans-
mission delay

Improvement of the
proposed method with
less transmission delay

2 [2] (2021) Providing an algorithm for
offloading computational
tasks and reducing trans-
mission delay and access
time

Deep Reinforce-
ment Learning

Programming
language
MATLAB

Hopson One:
http://www.
thebeijinger.com

Transmission
delay, access
time

Reduce Trans-
mission delay,
Reduce access
time

Improving the pro-
posed algorithm with
other deep learning
methods

3 [6] (2020) Providing an algorithm for
offloading optimal compu-
tational tasks and reducing
execution time

Deep Reinforce-
ment Learning

Python pro-
gramming
language

Powercastc:
http://www.
powercastco.com.

Execution time Reduce execu-
tion time

Increasing the ac-
curacy of decision-
making in the compu-
tational tasks offload-
ing algorithm

4 [14] (2020) Providing an algorithm for
offloading optimal compu-
tational tasks and reducing
transmission delay

Meta Reinforce-
ment Learning

Programming
language
MATLAB

https://datasf.
org/opendata

Transmission
delay

Reduce Trans-
mission delay

Providing algorithms
with higher accuracy

5 [7] (2020) Presenting an online al-
gorithm that optimally
adapts offloading decisions
to the changing conditions
of the Mobile-Edge envi-
ronment.

Deep Reinforce-
ment Learning

Programming
language
Python with
TensorFlow

Powercastc:
http:/www.
powercastco.com.

Performance
rate, Calcula-
tion time

Reduce Per-
formance rate,
Reduce Calcu-
lation time

Solving resource allo-
cation sub-problems ef-
fectively to increase the
quality of decision vari-
ables

6 [5] (2022) Providing a resource al-
location method in edge
computing to reduce time
delay and reduce energy
consumption

Reinforcement
Learning

Programming
language
MATLAB

Artificial data
(random loading)

Time delay,
Energy con-
sumption

timeReduce
delay, Reduce

con-Energy
sumption

Providing a method
with less transmission
delay and increasing
the predictive power

7 [13] (2021) Providing an algorithm for
offloading optimal compu-
tational tasks to reduce
transmission delay and re-
duce execution time.

Deep Learning Programming
language
Python

https://datasf.
org/opendata

Transmission
delay, execu-
tion time

Reduce Trans-
mission delay,
Reduce execu-
tion time

Improving the pro-
posed algorithm with
other deep learning
methods

8 [1] (2020) Providing an algorithm for
offloading optimal compu-
tational tasks to reduce
transmission delay

Deep Learning Programming
language
MATLAB

Hopson One:
http://www.
thebeijinger.com

Transfer rate Reduce Trans-
fer rate

Testing the proposed
algorithm in dynamic
and practical environ-
ments

9 [12] (2020) Presenting an algorithm
for offloading optimal com-
putational tasks and pre-
senting a scaling method
for resource management
to reduce task execution
time and reduce energy
consumption

Deep Reinforce-
ment Learning

Programming
language
Python

https://cloud.
google.com/free
Google Cloud
trackers

Task execution
time, Energy
consumption

Reduce Task
execution time,
Reduce Energy
consumption

Developing more so-
phisticated methods
such as multi-agent
deep reinforcement
learning

10 [4] (2022) Presenting a computa-
tional offloading method
in a multi-user and multi-
agent environment to
reduce transmission delay

Algo-Genetic
rithm

Programming
language
MATLAB

https://cloud.
google.com/free
Google Cloud
trackers

Transmission
delay

Reduce Trans-
mission delay

Combining the pre-
sented method with
deep learning tech-
niques

• Taskedged,s (t) = Taskd (t): Task Taskd(t) for t ∈
{1, 2, . . . , t− 1} is unloaded at the edge servers in
time interval t − 1. Taskedged,s (t) = 0: That is, the
task is not unloaded.

E. Queues in Edge Servers:

The queue model in edge servers and its parameters [12]
are:

• FIFO: Queue model associated with a mobile de-
vice in an edge server.

• Size_Queueedged,s (t): The queue length of mobile
device d in edge server s at the end of time slot t.

• Size_edge edge
s : The processing capacity of edge

server s (in CPU cycles per second).

• Size_Queueedged,s (t) =
[
Size_Queueedged,s (t− 1)+

Size_T ask (t) − Size_edgeedges ∆
]+

: Update
the transmission queue length.

6 Proposed Method

To speed up the performance of computing tasks in
MEC technology, we need to reduce the time of task
transfer. To reduce the transfer time, we need to pay
attention to two things. First, the computing resources
and computing power available to edge servers are lim-
ited, and with the diverse computing tasks generated
by mobile devices in today’s world, and the hardware
and computing power of mobile devices are being up-
graded, some tasks should be processed by the same
mobile device that generated these tasks, if possible, so
that there is no transmission delay. However, some large
computing tasks must be offloaded to edge servers due
to the hardware limitations of mobile devices. There-

116

Gharravi et.al. Transfer Time Reduction for Offloading... Amirkabir University of Technology, October 23-24, 2024

fore, the right decision to offload or not offload tasks to
edge servers is raised. Second, if the offloading decision
is to offload tasks to edge servers, the selection of an
appropriate edge server in terms of distance, resources,
bandwidth, transmission delays, etc., to offload tasks
while supporting user mobility and considering the cri-
terion of reducing the transmission time in the MEC
environment is proposed, this operation is based on the
parameters defined in Section 5 and shown in Figure 4.
Therefore, finding an appropriate computational task
offloading strategy to minimize the transmission time by
considering the appropriate location for executing tasks
(producing mobile device or edge server) and selecting
the appropriate edge server to execute tasks in the MEC
environment is a challenge. To solve this challenge, in
this paper, we propose a method based on the Deep Re-
inforcement Learning (DRL) algorithm to optimize the
computational task offloading operation in the MEC en-
vironment, because one of the outstanding features of
the DRL technique is the ability to learn automatically
and without the need for labeled data, for this reason it
can Decision-making without environmental factors of
modeling and system dynamics, and is a suitable option
for the dynamic MEC environment. In this paper, we
consider tasks as indivisible, delay-sensitive, and queu-
ing systems. The proposed method in the MEC envi-
ronment gradually learns optimal strategies and behav-
iors by interacting with the environment with unknown
load levels, mobility, and complex interactions between
tasks, and makes the correct unloading decision. Q-
learning algorithms do not work well in environments
with many variables. Also, a lot of memory is required
to store Q values, which affects the power and speed
of convergence. The DRL algorithm has solved this
problem. The DRL algorithm is a supervised learning
method, which has increased the efficiency and speed of
convergence.

Figure 4: Proposed computational unloading operation

7 Implementation of the proposed method

We used the Linux Ubuntu 24.04 LTS operating system
and the IntelliJ community edition environment in Java
to implement the proposed method. We used Keras
software in Python to implement the DRL algorithm,
and Deeplearning4j to convert the neural network code
to Java. To collect data, we need to observe and control
the MEC environment. For this, we used the Collected
tool.

First, mobile devices check their information such as
task size, queue length, etc. If a new task arrives, a
decision is made whether to run it there, or offload it to
edge servers.

7.1 Action

If device d receives a task (Taskd(t)) at time slot t, it
must execute one of the following decisions:

(a) The input task is processed by the mobile device
itself, or uploaded to an edge server for execution.
i.e. Offload_Taskd(t)

(b) Selecting the appropriate edge server to load and
execute i.e. Edge_Serverd(t).

Therefore, the decision of mobile device d at time t is
shown in equation (1) [12]:

actiond(t) = (Offload_Taskd(t),Edge_Serverd(t)) (1)

7.2 State

We assume that mobile device d can obtain state infor-
mation including Size_Taskd(t), H_Task comp

d (t) task
of device d in the computation queue) and
H_Task tran

d (t)task of device d in the transmis-
sion queue) By controlling external environmental
factors [12] in time t through equation (2).

Hd (t) =
(
Size_Taskd (t) ,H_Taskcomp

d (t) ,

H_Tasktrand (t) , Size_Queueedged (t− 1)
)

(2)

7.3 Transmission Delay

If the parameter Offload_Taskd(t)=1 for the task
Taskd(t), then Equation (2) shows the amount of wait-
ing time (number of time slots) that should be consid-
ered for sending the job. Therefore, the transmission

117

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

delay time can be calculated according to Equation (3).

H_Task tran
d (t) =

[
max

t ∈{0,1,...,t−1}
H_TASKtran

d (t)− t+ 1

]+

Transfer_Delay = H_Tasktran
d (t)∗∆

H_TASKtran
d (t) = min

{
t+Rate tran

d (t)

+

⌈∑
s

Taskd,s(t)Edge_serverd(t)

Rate tran
d,s (t)

⌉
− t− 1

}
(3)

8 Neural Network of the Proposed Method

The goal of the proposed method is to find an optimal
path to reduce the transmission time, and consequently
the response time. Figure 5 shows the neural network
of the proposed method for mobile device d with the
parameter vector NETθd, which maps from the state
Hd(t) to Q-Val to each action. We used three layers to
implement the neural network of the proposed method,
the input layer, the DRL layer (OffLoading operation)
and the output layer. As you can see in Figure 5, the
state information is sent to the DRL network through
the input layer. In the DRL network, an agent observes
the current state and inputs it as input data into the
DNN, the DNN outputs the action values. Based on
those outputs, the agent selects actions. The parameter
vector of the neural network of the device d is repre-
sented by the parameter NETθd. The details of each
layer are as follows.

8.1 Input Layer

The input layer accepts the mobile device state pa-
rameters d, which are Size_Taskd(t), Rate comp

d (t),
Rate tran

d (t) and Size_Queueedged (t − 1) as input and
sends it to the next layer, and is passed to the DRL
layer to determine the appropriate edge server.

Output Layer DRL Layer Input Layer

Size_Taskd(t)

Qd(Hd(t)), actiond,
Hcomp

Task,d(t)

NETθd

Hcomp
Task,d(t)

Hcomp
Task,d(t)

Figure 5: Neural network of mobile device d

8.2 DRL layer

The DRL-based algorithm is also executed on the mo-
bile device d (Algorithm 1) and the edge server s (Algo-
rithm 2). Based on these two algorithms, an attempt is

made to select a state that achieves the minimum Q-val,
and the task transfer time is minimized.

For device d, a replay memory Md is considered in
the edge server s. The replay memory Md is the storage
location for the history Hd(t+1)) (Hd(t), actiond(t) of
the mobile device d for the value t.

The edge node s defines two neural networks for the
device d ∈ Ds:

a. Evaluation network (NetEd).

b. Target network (Tar_NetEd).

We use the NetEd network for action selection and the
Tar_Q_Val for Tar_NetEd target network, which ap-
proximates the transfer time of an action in a given
case. To update the NetEd evaluation network for
future optimal decisions, Tar_Q_Val is used to min-
imize the difference between Q-Val and Tar_Q_Val.
The structure of the NetEd and Tar_NetEd neural
networks is similar, but their parameter vectors are
not the same, the parameter NETθd is considered for
NetEd and the parameter NET θ−d is considered for
Tar_NetEd. Hence, the Q-val parameter for NetEd is
Qd(Hd(t),action; NETθd and the parameter Tar_NetEd

is represented as Qd(Hd(t),action; NETθd). The initial-
isation of the replay memory Md and the two neural
networks is given in steps 2-5 in Algorithm 2.

8.2.1 Algorithm 1 in mobile device d

The parameter V in step 2 of Algorithm 1 represents
the number of segments considered. At the beginning
of each segment, mobile device d initializes the state
according to equation (4), for example:

Hd(1) =
(
Size_Taskd(1), Ratecomp

d (1), Ratetrand (1),

Size_Queueedged (0)
)

(4)

We also define (0)=0 Size_Queueedged,s for all edge
servers. If device d has a new Taskd(t), mobile device
d selects its action for task Taskd(t) based on equation
(5) and the parameter vector NETθd from NetEd [12].
It then sends a Signal request to sd to update the pa-
rameter vector NETθd for the task it is using.

actiond(t) ={
εaction random action , w.p.

argmin Qd (Hd(t), action; NETθd), w.p. 1− ε

(5)

where with probability ε is a random discovery. Of
course, according to the probability 1 − ε, mobile device
D makes a decision that minimizes the Q-val parameter
in Hd(t) and NetEd. Mobile device D can see the next
state of Hd(t+1) in the time slot (t+1).

118

Gharravi et.al. Transfer Time Reduction for Offloading... Amirkabir University of Technology, October 23-24, 2024

Algorithm 1 Offloading algorithm on device d
1: for Sec = 1, 2, . . . , V do
2: Give the initial value Hd(1) according to equa-

tion (8)
3: while t ∈ T do
4: if Taskd(t) then
5: sd = req-parameter (send)
6: Receive ← parameter(vector NETθd)
7: NETθd = req-parameter (receive)
8: actiond(t) = choose an action according

to equation (5)
9: end if

10: Consider Hd(t+ 1)
11: Consider Transfer_Delay
12: for Taskd(t) do
13: Send (Hd(t), actioni(t),Hd(t+ 1)) to sd
14: end for
15: end while
16: end for

8.2.2 Algorithm 2 at Edge Server s

In this algorithm, we first initialize the replay memory
Md and the neural networks NetEd and Tar_NetEd re-
lated to the mobile device d. Then, the edge server s
waits to receive a message from the mobile device d. If
the edge node s accepts a request from the device d, it
sends NETθd to the mobile device d through NetEd. If
the mobile device d sends an experience sample (Hd(t),
actiond(t) ,Hd(t + 1)) to the edge server S, the server S
stores this experience in the replay memory Md. Note
that in this algorithm, we can do the sending of the re-
sponse parameter (steps 7 and 8) and the training of
the network (steps 11 to 19) together. That is, the edge
server S sends the vector NETθd to when receiving a
request, regardless of the ongoing training. The neural
network specific to the edge server is trained in steps 11
to 19 by the proposed algorithm. And during training,
the NETθd vector is updated by the NetEd network
based on equation (6) [3]. The edge server randomly
samples a set of experiences from the memory (in step
16), which is denoted by p. |p| is based on the experience
samples in the set p. The key idea of updating NetEd

is to minimize the difference between Q-Val in NetEd

and Tar_Q-Val, which we denote by QTarget
d,i , where i

represents the step number, are calculated based on the
experience samples in Tar-NetEd.

P (NETθd , QTarget
d) =

1

|p|
∑
t ∈ T

(
Hd(t), actioni(t);

NETθd)−QTarget
d,i

)2 (6)

To derive this Tar-Q-val, let actionnext
i denote the ac-

tion Considering the lowest specified Q-value the state

Hd(t + 1) in NetEd [3]. As in equation (7):

actionNext
i = argminactionQd

(
Hd(t+ 1), action; θNET d

)
(7)

The Replace Threshold parameter indicates the num-
ber of training rounds after which Tar_NetEd should
be updated. That is, for each training round of Re-
place Threshold, the parameter Tar_NetEd is updated
based on NetEd (step 18 of Algorithm 2). The goal of
continuously updating NETθ−d in Tar_NetEd is to bet-
ter approximate the transition time parameter in the
calculation of Tar_Q_Val in equation (8) [3].

QTarget
d = Qd(Hd(i+ 1), actionNext

i ; NETθ−d). (8)

Algorithm 2 Offloading algorithm on edge server s
1: Give the initial value to Dd = 0
2: Give the initial value to param_count = 0
3: Give the initial value to NetEd = random θd
4: Give the initial value to Tar_NetEd = random

NETθ−d
5: while True do
6: if d_receive(req-parameter) = 1 then
7: NETθd = receive(device d)
8: end if
9: if d_receive(Hd(t), actiond(t),Hd(t + 1)) = 1

then
10: Md_store_experience((Hd(t), actiond(t), Hd(t+ 1)))
11: for each experience in Md do
12: Md_Gain_experiences(Hd(t), actioni(t), Hd(t+ 1))
13: end for
14: QTarget

(d,i) _Setvector = QTarget
(d,i)

15: θd_Update_minimize = P (NETθd, Q
Target
d)

according to equation (8)
16: Count++
17: if mod(Count,Replace_Threshold) = 0 then
18: NETθ−d = NETθd
19: end if
20: end if
21: end while

9 Evaluation

In the evaluation section, we evaluate and compare our
proposed method, and present experiments based on
large-scale simulations with edge-to-edge communica-
tions. In this paper, we use the EdgeCloudSim simu-
lator [1] as our simulation environment, and compare
the results of our proposed algorithm with those of the
papers listed below, which address task loading opti-
mization in the MEC environment. This comparison is
based on transmission delay measurements.

• No_OffLoad method

119

The 1st International Conference on Machine Learning and Knowledge Discovery MLKD 2024

• Random_OffLoad method

• ADRL method [12]

• Genetic method [3]

9.1 Simulation environment configuration

The environment parameter settings are given in Table
2. The neural network settings are as follows. The
batch size is set to 16. The learning rate is 0.001 and
the discount factor is 0.9. The probability of random
exploration is gradually reduced from 1 to 0.01 [12]. For
the simulation, we used the EdgeCloudSim optimizer.
in these assessments, we consider the environment to
be constant.

Table 2: Simulation environment parameter settings

Parameter Value
D 50 [12]
Pdevice
d 2.5 GHz [12]

S 5 [12]
∆ 0.1 second [12]
P edge
s 41.8 GHz [12]

Ratetran
(d,s)

14 Mbps [12]
Size_Task(d)(t) {2.0, 2.1, . . . , 5.0} Mbits [12]
PWd 0.297 gigacycles per Mbits [12]
W(d) 10 time slots (i.e., 1 second) [12]
Task arrival probability 0.3 [12]

9.2 Simulation Results

The results of comparing the proposed method with the
methods mentioned in Section 6 with the transmission
delay criterion are shown in Figures 6 to 8. In Figure
6, we see that by increasing the task arrival probability
parameter from 0.1 to 0.6, the proposed algorithm en-
counters an increase in the average delay of 21.6%, but
the average delay of the evaluated methods increases by
at least 38.3%. We see that by increasing the task ar-
rival probability parameter, the increase in the average
delay of the proposed algorithm is significantly less than
that of the evaluated methods. Figure 7 shows that with
the increase in the number of mobile devices, with the
increase in the number of mobile devices (increase in
the number of tasks produced by mobile devices), the
average transmission delay of all the evaluated methods
increases. In Figure 7, we see that when the number
of mobile devices reaches 130, the average delay is 36%
less than the evaluated method. In Figure 8, we reduce
the number of edge servers from 5 to 2, and compare the
proposed method and the evaluated methods. We ob-
serve that the average latency of our proposed algorithm
increases by 31.3%, while the other evaluated methods
increase by at least 45.5%.

Figure 6: Evaluation of transmission delay under differ-
ent task arrival probabilities

Figure 7: Evaluation of transmission delay under differ-
ent numbers of mobile devices

Figure 8: Evaluation of transmission delay under differ-
ent capacity of edge servers (GHZ)

10 Conclusion

In this paper, we investigated the optimization of com-
putational offloading operations in the MEC environ-
ment to reduce the load transfer time in edge servers.
This optimization was performed in two stages, the first
stage is to determine whether the entered tasks can be
executed on mobile devices, if so, they are executed
without transfer time on the device itself, otherwise, in
the second stage, the proposed algorithm tries to iden-
tify the nearest edge server with the minimum transfer
time to offload the computational load. We used the
DRL algorithm to implement this method. By com-
paring the proposed method with other methods in the
evaluation section, we showed that the proposed method
has a significant improvement in the load transfer time
in edge servers. We defined the use of another machine

120

Gharravi et.al. Transfer Time Reduction for Offloading... Amirkabir University of Technology, October 23-24, 2024

learning method in addition to DRL as future work.

References

[1] N. Alaei and F. Safi-Esfahani. Repro-active: a reactive–
proactive scheduling method based on simulation in
cloud computing. The Journal of Supercomputing,
74(2):801–829, 2018.

[2] Z. Cao, P. Zhou, R. Li, S. Huang, and D. Wu. Multi-
agent deep reinforcement learning for joint multichan-
nel access and task offloading of mobile-edge comput-
ing in industry 4.0. IEEE Internet of Things Journal,
7(7):6201–6213, 2020.

[3] S. Chakraborty and K. Mazumdar. Sustainable task of-
floading decision using genetic algorithm in sensor mo-
bile edge computing. Journal of King Saud University-
Computer and Information Sciences, 34(4):1552–1568,
2022.

[4] J. Chen, H. Xing, Z. Xiao, L. Xu, and T. Tao. A drl
agent for jointly optimizing computation offloading and
resource allocation in mec. IEEE Internet of Things
Journal, 8(24):17508–17524, 2021.

[5] X. Chu and Z. Leng. Multiuser computing offload algo-
rithm based on mobile edge computing in the internet
of things environment. Wireless Communications and
Mobile Computing, 2022(1):6107893, 2022.

[6] L. Huang, S. Bi, and Y.-J. A. Zhang. Deep reinforce-
ment learning for online computation offloading in wire-
less powered mobile-edge computing networks. IEEE
Transactions on Mobile Computing, 19(11):2581–2593,
2019.

[7] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu.
Deep reinforcement learning-based joint task offloading
and bandwidth allocation for multi-user mobile edge
computing. Digital Communications and Networks,
5(1):10–17, 2019.

[8] X. Li, L. Huang, H. Wang, S. Bi, and Y.-J. A. Zhang.
An integrated optimization-learning framework for on-
line combinatorial computation offloading in mec net-
works. IEEE Wireless Communications, 29(1):170–177,
2022.

[9] W.-x. Liu, J. Cai, Q. C. Chen, and Y. Wang. Drl-
r: Deep reinforcement learning approach for intelligent
routing in software-defined data-center networks. Jour-
nal of Network and Computer Applications, 177:102865,
2021.

[10] P. Mach and Z. Becvar. Mobile edge computing: A sur-
vey on architecture and computation offloading. IEEE
communications surveys & tutorials, 19(3):1628–1656,
2017.

[11] T. Soyata. Enabling Real-Time Mobile Cloud Comput-
ing through Emerging Technologies. IGI Global, 2015.

[12] M. Tang and V. W. Wong. Deep reinforcement learning
for task offloading in mobile edge computing systems.
IEEE Transactions on Mobile Computing, 21(6):1985–
1997, 2020.

[13] Z. Wan, X. Dong, and C. Deng. Deep learning with
enhanced convergence and its application in mec task
offloading. In International Conference on Algorithms
and Architectures for Parallel Processing, pages 361–
375. Springer, 2021.

[14] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Geor-
galas. Fast adaptive task offloading in edge computing
based on meta reinforcement learning. IEEE Transac-
tions on Parallel and Distributed Systems, 32(1):242–
253, 2020.

121

122

	Session 1B
	Transfer Time Reduction for Offloading in the Mobile Edge Computing using Machine Learning (Sorayya Gharravi, Seyed Morteza Babamir)

