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The Application and Effectiveness of Machine Learning and Deep Learning
Methods in Analyzing and Predicting the Shanghai Stock Index

Raziye Rafibakhsh*

Abstract

In recent years, stock price prediction has become a
pivotal area of research in finance and economics, at-
tracting significant attention because of its potential for
generating profits and managing risk. Financial mar-
kets, characterized by high volatility, nonlinear dynam-
ics, and complex endogenous patterns, present consider-
able challenges for investors and analysts. The Shanghai
Stock Exchange, one of the largest and most dynamic
markets in Asia, has garnered significant interest from
researchers and market participants alike because of its
sensitivity to economic, political, and social factors.

This article evaluates and compares the performance
of traditional time series models, including the Random
Walk model, which is considered a key benchmark and is
aligned with the Efficient Market Hypothesis, alongside
modern machine learning and deep learning techniques
for predicting stock prices in the Shanghai Stock Ex-
change. The impact of data preprocessing techniques
and feature selection on the accuracy of these models
is also examined. Additionally, an innovative hybrid
model, ARMA-CNN-BIiLSTM, is proposed, which com-
bines the classical ARMA model with advanced neu-
ral networks such as CNN and BiLSTM. This hybrid
approach enhances the extraction and analysis of tem-
poral and spatial patterns from financial data, yielding
better results compared to the CNN-BiLSTM model.
Since the Random Walk model is used as a benchmark
in this study, the more the implemented models out-
perform this benchmark, the more the Efficient Market
Hypothesis, which suggests that market prices fully and
instantly reflect all available information, will be chal-
lenged.

Keywords: stock market price prediction, machine
learning, deep learning

1 Introduction

Stock price prediction has emerged as a pivotal area of
research in finance, offering significant opportunities for
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profit generation and risk management in highly volatile
markets. The Shanghai Stock Exchange, one of Asia’s
largest and most dynamic markets, has garnered sub-
stantial attention from both academics and profession-
als due to its sensitivity to various economic, political,
and social factors [1, 2].

Traditional time series models, such as the Random
Walk and ARIMA, have been extensively used for an-
alyzing stock price movements. The Random Walk
model, which is grounded in the efficient market hypoth-
esis, suggests that stock prices follow an unpredictable
and random path, rendering future price movements dif-
ficult to predict [1]. However, recent advancements in
machine learning have uncovered hidden patterns in fi-
nancial data, providing a more sophisticated means of
predicting stock prices that outperforms traditional ap-
proaches [2].

The ARIMA model, a well-known linear approach in
time series forecasting, effectively captures autoregres-
sive and moving average components but struggles with
nonlinear and complex financial data [3, 4]. To address
this, modern machine learning techniques such as XG-
Boost have demonstrated superior performance in stock
price prediction, especially in markets like China, where
data is extensive and dynamic [6, 7).

Moreover, hybrid models that integrate Convolu-
tional Neural Networks (CNN) and Long Short-Term
Memory (LSTM) networks, like CNN-LSTM and CNN-
BiLSTM, have shown significant success in forecasting
stock prices. By combining spatial feature extraction
capabilities with the temporal modeling strengths of
LSTM, these hybrid models effectively analyze the com-
plex patterns in financial time series [8, 9, 10].

This paper aims to evaluate and compare the per-
formance of these methods in predicting stock prices in
the Shanghai Stock Exchange, assessing the influence of
data preprocessing techniques and feature selection on
predictive accuracy.

2 Methodology

This section outlines the methods and techniques em-
ployed for forecasting the Shanghai Stock Exchange
(SSE) index. The primary focus of this study is to eval-
uate the application and effectiveness of advanced ma-
chine learning and deep learning models in analyzing



and predicting the index.

2.1 Data Description

The data used in this study consists of the Shanghai
Stock Exchange Index from January 4, 2010, to Jan-
uary 23, 2020, obtained from the Yahoo Finance web-
site. The dataset includes daily information such as
open, close, high, and low prices, as well as trading vol-
ume. Additionally, macroeconomic features such as the
Consumer Price Index (CPI) and interest rates were
retrieved from the FRED database and incorporated
as auxiliary data. The data was initially divided into
three sets: training (70%), validation (10%), and test-
ing (20%). Several preprocessing steps were then per-
formed, including handling missing values and identi-
fying/removing outliers using Z-score analysis (Figures
2 and 3). The stationarity of the time series was as-
sessed using the Augmented Dickey-Fuller (ADF) and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. Dif-
ferencing was applied to certain features to achieve sta-
tionarity, as this study found that making some features
stationary empirically improved model accuracy. Ad-
ditionally, normalization techniques such as Min-Max
scaling and Yeo-Johnson transformation were employed
to standardize the data and prepare it for modeling.
The statistical analysis of the Shanghai stock market,
as displayed in Figures 1, 2, and 3, reveals significant
volatility and random fluctuations in stock prices. An-
alyzing adjusted closing prices during the specified pe-
riod, we found a mean of $2801.28 and a standard de-
viation of $529.82, indicating high market volatility.
Skewness and kurtosis values of $0.748 and $1.52, re-
spectively, highlight asymmetric price movements and
the occurrence of rare events. These findings are cru-
cial for selecting and refining predictive models to bet-
ter account for irregular market behaviors, potentially
suggesting the use of nonlinear models. Figure 4 fur-
ther illustrates the overall trend and fluctuations in the
market through a time series plot of these prices.
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Figure 1: Histogram of adjusted closing prices for the
Shanghai stock market
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Figure 2: Box plot of adjusted closing prices for the
Shanghai stock market before removing outliers
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Figure 3: Box plot of adjusted closing prices after re-
moving outliers using Z-score analysis
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Figure 4: Time series of adjusted closing prices for the
Shanghai Stock Index

Statistical tests, including the Phillips-Perron test
and the variance ratio test, revealed that the adjusted
closing prices follow a random walk. This makes predic-
tions more challenging, as market returns exhibit ran-
dom fluctuations. The results from the ACF and PACF
plots before and after differencing (Figures 5 and 6)
demonstrated that, after first differencing, the time se-
ries became stationary, making it suitable for modeling
with techniques such as ARIMA.
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Figure 5: Autocorrelation and partial autocorrelation
plots of adjusted closing prices of the Shanghai stock
market

Figure 6: Autocorrelation and partial autocorrelation
plots of adjusted closing prices after first differencing

Seasonal and weekly analyses were also conducted to
examine temporal effects on the data. The results of
the t-test indicated that none of the weekdays had a
significant impact on price changes. However, signifi-
cant changes were observed during the second and third
quarters of the year, indicating a notable seasonal effect.
Finally, the decomposition of the adjusted closing prices
into trend, seasonal, and residual components (Figure
7) revealed that the Shanghai Stock Market exhibits an
overall upward trend, with seasonal fluctuations playing
a significant role in market changes.
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Figure 7: Decomposition of the time series of adjusted
closing prices

2.1.1 Min-Max Scaling

Min-Max Scaling is a simple yet effective normalization
technique where the data is scaled to a fixed range, typi-
cally [0, 1]. This method preserves the relationships be-
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tween data points (maintaining the relative distribution

of the data) while standardizing the range. However,

the presence of outliers can affect the scaling process,

as they may skew the minimum and maximum values.
The formula for Min-Max scaling is as follows:

X - Xmin

X = S~ min
Xmax - Xmin

(1)

Where:
e X is the original data value.
e X' is the scaled data value.

o Xmin and Xax are the minimum and maximum
values of the original data, respectively.

2.1.2 Yeo-Johnson Transformation

The Yeo-Johnson transformation is a statistical tech-
nique used to stabilize variance and make data more
normally distributed, similar to the Box-Cox transfor-
mation. Unlike Box-Cox, the Yeo-Johnson transforma-
tion can be applied to both positive and negative values,
making it more flexible. This transformation is defined
as follows:

w if A\#£0and y >0

In(y + 1 if A\=0andy >0
v = E<|y|+1))2**711 , )
—In(jy| + 1) ifA=2andy<0
Where:
e 1y is the original data value.

e\ is the transformation parameter.

By applying this transformation, data scientists can en-
hance the robustness and performance of their machine
learning models. [?]

Both transformations play crucial roles in the prepro-
cessing stage for machine learning models:

o The Box-Cox transformation (and its generalized
version, Yeo-Johnson) is beneficial when dealing
with non-normal distributions and heteroscedastic-
ity.

o Min-Max scaling is useful for normalizing data
within a specific range, ensuring that all features
contribute equally to the model.

Proper execution of these transformations can signifi-
cantly improve the performance of machine learning al-
gorithms by ensuring that the data is in an optimal
format for model training.



3 Implementation of models

This section introduces the machine learning and deep
learning models employed for predicting the Shanghai
Stock Exchange Index in detail.

3.1 Random Walk Model

The Random Walk model is a fundamental approach for
forecasting time series data and asset prices in financial
markets. It is based on the assumption that asset prices
reflect all available information, making future price
movements unpredictable. This concept aligns with the
Efficient Market Hypothesis (EMH). The Random Walk
model is represented as follows:

Po=P_1+¢ (3)

where P, is the asset price at time ¢, and ¢; is a random
variable with a mean of zero and constant variance. The
model assumes that price changes are driven purely by
new, random information, implying no identifiable trend
for prediction.

Algorithm 1 Simplified Random Walk

1: Input: Training and test data

2: Output: Random walk predictions and metrics

3: Download and split data into training and test sets
(70:30) and remove missing values

4: Initialize the random walk function

5. for each data point in train and test sets do

Set 'Random Walk Prediction’ as previous pre-

diction 4+ random normal value

7: end for

8: Calculate metrics for training and test data

9: return Random walk predictions and performance
metrics

As demonstrated in Algorithm 1, the model predicts
future prices based on past data with a random compo-
nent.

On the Shanghai Stock Exchange data, the model
shows poor performance: the Root Mean Square Error
(RMSE) is 780.857 for training and 285.443 for testing;
the Mean Absolute Error (MAE) is 668.156 for training
and 233.462 for testing; the Mean Absolute Percentage
Error (MAPE) is 27.7 for training and 8.1 for testing;
and the coefficient of determination (R?2) is -0.794 for
training and -0.293 for testing.

These results highlight the model’s limitations in ac-
curately capturing or predicting price changes, suggest-
ing that relying solely on the EMH might not fully ex-
plain price movements in the Shanghai stock market.
More advanced machine learning models, such as XG-
Boost or CNN-BILSTM, can uncover complex patterns

and significantly improve prediction accuracy, reveal-
ing the limitations of the Random Walk model in real
financial markets.

3.2 Random Forest Model

The Random Forest model is an ensemble learning
method that enhances predictive accuracy by combin-
ing multiple decision trees. The general formula for this
model is as follows:

f@) = 5 S Tiw) ()

In equation (2), T;(x) represents the output of the i-
th tree, and IV is the number of trees. To optimize this
model, BayesSearchCV was used, and the data was split
using the TimeSeriesSplit method.

Algorithm 2 Random Forest with Min-Max Scaler and

Features

1: procedure

EST MINMAXSCALER__FEATURES
Input: Data, Features
Output: Model predictions, performance met-

rics

4: Initialize the MinMaxScaler for ’Adj Close’ val-
ues

5: Apply scaling to ’Adj Close’ for training, valida-
tion, and test sets without data leakage

6: Create *Adj Close (t+1)’ column by shifting the
"Adj Close’ forward

7 Drop rows with null values from training, vali-
dation, and test sets

8: Initialize a pipeline with Random Forest Regres-
sor

9: Define  the  hyperparameter space for
n__estimators, max_ depth, and max__features

10: Set up a time series cross-validation strategy us-
ing 10 splits

11: Use BayesSearchCV for hyperparameter opti-
mization with 100 iterations

12: Fit the Random Forest model on the training
data using the optimal hyperparameters

13: Store the validation predictions in a list by pre-
dicting for each time step

14: Rescale validation predictions and actual values
back to the original scale

15: Calculate RMSE for the validation data

16: Append validation data to the training data and
retrain the model

17: Store the test predictions in a list by predicting
for each time step

18: Rescale test predictions to the original scale and
calculate metrics

19: end procedure

RANDOMFOR-
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As shown in Algorithm ??, the Random Forest model
has been employed with scaling and optimization tech-
niques to enhance accuracy.

3.3 Xtreme Gradient Boosting Model (XGBoost)

The Xtreme Gradient Boosting (XGBoost) model, an
advanced form of gradient boosting, was selected for
this study due to its ability to handle non-linear data
and effectively manage missing or noisy data. In this
research, the model was trained using features such as
seasonal moving averages and lagged data. Addition-
ally, the Yeo-Johnson transformation was applied for
data normalization.

Algorithm 3 XGBRegressor Prediction Model

1: procedure XGBREGRESSORPREDICTION YEO-
JOHNSON__ FEATURES
Input: Data, Features
Output: Model predictions, performance met-
rics
Shift *’Adj Close’ by -1 for all datasets
Drop rows with null values in all datasets
Set Adj Close (t+1) as the target variable for
all datasets
7: Define the XGBRegressor pipeline with a hyper-
parameter space
8: Initialize TimeSeriesSplit and BayesSearchCV
with the pipeline and hyperparameter space
9: Fit BayesSearchCV on the training data

10: Predict and evaluate on validation and test data

11: Concatenate validation data to the training data
and refit the model

12: Predict and evaluate test data

13: Inverse transform Yeo-Johnson and calculate
metrics

14: end procedure

3.4 CNN-BiLSTM Model

This section presents the Convolutional Neural
Network-Bidirectional Long Short-Term Memory
(CNN-BIiLSTM) model, which has been employed
for time series forecasting.  The model combines
convolutional layers and bidirectional LSTM layers,
effectively extracting both local features and temporal
dependencies in two directions.

The model’s weights are learned during the training
process via the model.fit() function. The model mini-
mizes errors using the mean-squared-error loss function
and the Adam optimizer with a learning rate of 0.001.
Grid search was employed for hyperparameter optimiza-
tion, determining the best values for the number of fil-
ters in CNN layers, the number of neurons in BiLSTM
layers, and the dropout rates to minimize validation er-
ror. The CNN layers serve as initial layers, capturing
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local patterns from non-stationary data, while the BilL-
STM layers learn the temporal dependencies in both
forward and backward directions.

Dropout layers were used to prevent overfitting by
randomly deactivating certain nodes during training.
The overall goal of the model is to optimize the error
function.

The convolutional layer operation is defined as fol-
lows:

Convey, = ReLU(Convippyt, * Filter + Bias)  (5)

As shown in Equation (1), the convolution operation is
performed by the CNN filters, and the output is gener-
ated through the ReLU activation function.

The forward-pass operation of the BiLSTM layer is
as follows:

fr = o(Wy - [he—1, 2] + by) (6)
i = O'(W,L . [ht_l,xt] + bz) (7)
or = o(Wy - [he—1,2¢] + bo) (8)

¢t = fy oci_q1 + ip o tanh (W, - [he—1, x¢] + be) (9)

h; = o; o tanh(c;) (10)

The backward-pass operation of the BiLSTM layer is
defined as follows:

B = o (W5 - (1Y, o] + by™) (11)
B = (WP ] + 0 (12)
0r = a(Wo™ - [hiSh, 4] + 65™) (13)

Y = £V o} i otanh(WE - [R5, 2] +52Y) (14)

h;®" = 0}°¥ o tanh(c;®) (15)

As shown in Equations (2) to (12), both temporal di-
rections in the BiLSTM layer are processed, optimizing
the information.

The general algorithm for implementing the CNN-
BiLSTM model is as follows:



Algorithm 4 CNN-BiLSTM Model with PSO Opti-
mization

1: procedure CREATE__DATASET( dataset,

look__back=5)

2: Input: Data

3: Output: Model predictions, performance met-
rics

4: for each dataset element in range do

5: Extract sliding window sequences for look-

back period
Append sequences to dataX and dataY

end for
return dataX, dataY

end procedure

10: procedure RESHAPE_DATA(dataX)

11: Reshape dataX to 3D array for CNN input

12: end procedure

13: procedure BUiLD MODEL

14: Initialize CNN-BiLSTM model

15: Add ConvlD layers with filters and kernel sizes

16: Add MaxPooling and Bidirectional LSTM layers

17: Add Dropout layers for regularization

18: Add Dense output layers

19: end procedure

20: procedure COMPILE__MODEL

21: Compile the model using Adam optimizer and
MSE loss function

22: end procedure

23: procedure TRAIN_MODEL(trainX, trainY, valX,
valY)

24: Train the model for 200 epochs with a batch size
of 32

25: end procedure

26: procedure OPTIMIZE _WEIGHTS _WITH_PSO

27: Define objective function for PSO based on
weighted RMSE

28: Define constraints (sum of weights = 1)

29: Initialize PSO with bounds and optimize weights

30: end procedure

31: procedure EVALUATE_ MODEL

32: Inverse transform Min-Max and calculate met-
rics

33: end procedure

As shown in Algorithm 4, the CNN-BiLSTM model
is optimized using Particle Swarm Optimization (PSO)
for the weights of different layers.

3.5 ARMA-CNN-BIiLSTM Hybrid Model

This innovative model leverages a hybrid approach that
combines classical and modern methodologies to fore-
cast financial time series:

The Autoregressive Moving Average (ARMA) Model:
The ARMA model is a classical time series model that

analyzes data by considering both autoregressive (AR)
and moving average (MA) components. It is expressed
as follows:

Xi=1 Xs 1+ 02Xy o+ -+ 0 X4y (16)
+0161—1 + bOagro + -+ 0461—g + &4

Where:

- X is the observed value at time t,

- ¢1,...,¢p are the parameters of the AR component
(autoregressive part),

- 01,...,0, are the parameters of the MA component
(moving average part),

- p is the order of the AR model, representing how
many previous values are used to predict the current
value,

- q is the order of the MA model, representing how
past forecast errors (€¢—1,£¢—9,...) are used to adjust
predictions,

- & is the error term (white noise) at time ¢.

The AR component captures the influence of past
values on the current observation, while the MA com-
ponent accounts for past forecast errors. The ARMA
model is effective in modeling time series that exhibit
both autoregressive behavior and moving average char-
acteristics. However, it may struggle to capture com-
plex, nonlinear patterns often present in real-world
data.

Key Insight: The residuals from the ARMA model,
which represent the portion of the time series that the
ARMA model fails to capture, are passed as inputs to
the CNN and BiLSTM models. These residuals allow
the CNN and BiLSTM to focus on more complex, non-
linear fluctuations in the data that the ARMA model
cannot model effectively.

The Convolutional Neural Network (CNN) Model: In
this hybrid approach, CNN is employed to process the
residuals from the ARMA model. By using convolu-
tional layers, CNN extracts localized and intricate fea-
tures from the time series data. It identifies nonlin-
ear patterns in the residuals that are difficult to cap-
ture through traditional statistical models. The CNN
architecture includes ConvlD layers to process one-
dimensional time series data and MaxPooling layers
to reduce dimensionality, thereby concentrating on the
most significant features.

The Bidirectional Long Short-Term Memory (BiL-
STM) Model: The BiLSTM model, a type of recurrent
neural network, is used to capture long-term dependen-
cies and model time series in both forward and backward
directions. This dual-direction approach enhances the
model’s ability to remember important patterns over
time, improving the accuracy of time series predictions.
BiLSTM'’s ability to preserve time-dependent relation-
ships makes it highly effective in capturing both short-
and long-term trends in the residuals.

106



Optimization with Particle Swarm Optimization

(PSO): After obtaining predictions from both CNN
and BiLSTM models, the Particle Swarm Optimiza-
tion (PSO) algorithm is used to combine these predic-
tions optimally. PSO searches for the best combina-
tion of model weights that minimizes the prediction er-
ror, specifically targeting the Root Mean Squared Error
(RMSE). This optimization process ensures that the fi-
nal hybrid model is finely tuned to deliver the most
accurate predictions.
Model Innovation:The integration of the ARMA model
with CNN and BiLSTM, optimized by the PSO algo-
rithm, presents a novel approach for time series fore-
casting. The ARMA model captures linear and sta-
tionary components, while CNN and BiLLSTM handle
complex, nonlinear patterns. The optimization step en-
sures that the hybrid model achieves superior predictive
performance, combining the strengths of each individual
component to reduce errors and enhance model efficacy.
This hybrid methodology is particularly effective in sce-
narios where traditional models like ARMA fall short
in dealing with nonlinearity, as the CNN and BiLSTM
components bridge this gap. Through this integration,
the model achieves robust and accurate predictions for
complex financial time series.

Algorithm 5 ARMA-CNN-BIiLSTM Model with PSO
Optimization

1. procedure ARMA__MODEL(train__data, or-

der=(p, q))

2: Input: train_data, ARMA(p,q) order
3: Fit ARMA model on the training data
4: return ARMA residuals for CNN-BiLSTM

model
5: end procedure
6: procedure
look__back=5)
Input: dataset, look__back (default=>5)
Output: dataX, dataY
for i in range(len(dataset) - look__back - 1) do

CREATE__DATASET(dataset,

10: Extract sliding window sequences for look-
back period

11: Append sequences to dataX and dataY

12: end for

13: return dataX, dataY

14: end procedure

15: procedure RESHAPE__DATA__FoRrR__ CNN(dataX)

16: Reshape dataX to 3D array for CNN input

17: end procedure

18: procedure BuiLD_ CNN_ MODEL

19: Initialize CNN model with ConvlD, MaxPool-
ing, Flatten, Dense, Dropout layers

20: Compile the CNN model with Adam optimizer
and mean squared error loss

21: end procedure

Algorithm 5 continue

22: procedure BuiLp_ BILSTM__MODEL

23: Initialize BiLSTM model with Bidirectional
LSTM and Dense layers

24: Compile the BiLSTM model with Adam opti-
mizer and mean squared error loss

25: end procedure

26: procedure TRAIN__MODEL(model, trainX, trainY,
valX, valY, epochs=300, batch__size=16)

27: Train the model using the provided training and
validation datasets

28: return trained model and training history

29: end procedure

30: procedure OBJECTIVE_FUNCTION(weights)

31: Combine predictions from CNN and BiLSTM
using the given weights

32: Calculate RMSE for train, validation, and test
datasets

33: return total RMSE

34: end procedure

35: procedure CONSTRAINT(weights)

36: Ensure that the sum of weights is equal to 1

37: end procedure

38: procedure OPTIMIZE_ WEIGHTS__WITH__PSO

39: Define the initial weights and bounds

40: Run PSO to optimize the weights based on the
objective function and constraints

41: return optimal weights

42: end procedure

43: procedure EVALUATE_ MODEL

44: Inverse transform predictions and actual values
to the original scale
45: Calculate evaluation metrics

46: end procedure
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4 Results

In this section, the results from implementing machine
learning and deep learning models for predicting the
Shanghai Stock Exchange index are analyzed and eval-
uated. The performance of each model on the train-
ing, validation, and test datasets is summarized using a
range of evaluation metrics. These metrics—Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and Coef-
ficient of Determination (R?)—are crucial for assessing
the accuracy and reliability of the models. The following
subsections provide detailed explanations of these met-
rics and their significance in performance evaluation.

4.1 Define Metrics

To evaluate the model performance, several commonly
used metrics in regression tasks are defined and ex-
plained below. These metrics enable us to quantify the



error between predicted and actual values and assess the
model’s overall fit.

4.1.1 Coefficient of Determination (R?)

Explanation: The Coefficient of Determination, de-
noted as R?, is a statistical measure that explains the
proportion of the variance in the dependent variable
that is predictable from the independent variables in
a regression model. It provides an indication of the
goodness-of-fit of the model, with values ranging be-
tween 0 and 1. An R? close to 1 signifies that a large
proportion of the variability in the target variable is ex-
plained by the model, while a value close to 0 indicates
poor model performance. This metric helps in assessing
how well the model generalizes to unseen data.
The formula for R? is:

SSYSS

2
=1 - —=
R SSeon

(17)

Where:

o SSies = >oi_i(yi — 9;)? is the residual sum of
squares, representing the error between the ob-
served and predicted values.

o SSiot = Y1 (y; —¥)? is the total sum of squares,
indicating the total variability in the actual data.

A higher R? value suggests that the model captures
more variance in the data, indicating better perfor-
mance.

4.1.2 Mean Absolute Error (MAE)

Explanation: The Mean Absolute Error (MAE) is a
metric that measures the average magnitude of the er-
rors in a set of predictions, without considering their di-
rection. It represents the average absolute difference be-
tween the predicted values and the actual values. MAE
is useful because it provides a straightforward interpre-
tation of the model’s prediction accuracy in the same
units as the target variable. A lower MAE value indi-
cates better predictive performance.
The formula for MAE is:

1 n
MAE = — i — Ui 1
>y — il (18)

i=1
Where:

e y; is the actual value,
e 7; is the predicted value,
e 1 is the total number of observations.

MAE is particularly useful when it is important to un-
derstand the typical size of errors in predictions. It
penalizes large errors equally, making it a robust met-
ric for evaluating model performance across a range of
datasets.

4.1.3 Mean Absolute Percentage Error (MAPE)

Explanation: The Mean Absolute Percentage Error
(MAPE) measures the accuracy of a forecasting method
by expressing the prediction error as a percentage of
the actual values. This scale-independent metric al-
lows for comparison across datasets of different scales.
MAPE is commonly used in fields like finance and eco-
nomics, where relative error percentages provide intu-
itive insights into model performance. However, it can
be sensitive to small values in the actual data, which
may result in large percentage errors.
The formula for MAPE is:

100 —
MAPE = — Z

i=1

(19)

Yi — Ui ’
Yi
Where:

e y; is the actual value,

e ¢; is the predicted value,

e 1 is the total number of observations.

MAPE offers a clear indication of the average percent-
age error made by the model, and a lower MAPE value
corresponds to a more accurate model.

These metric definitions and explanations form the
foundation for evaluating the performance of predictive
models. By understanding these metrics, we can effec-
tively assess the strengths and weaknesses of each model
applied to the Shanghai Stock Exchange index predic-
tion task.

Table 1: Machine Learning Model Results

Metric \ Training \ Validation \ Test
Random Forest Model
RMSE 0.057 0.224 0.246
MAE 0.045 0.207 0.188
MAPE | 339129655.51% 18.74% 27.79%
R? 0.97 0.42 0.33
XGBoost Model
RMSE 0.00063 0.20254 0.12651
MAE 0.119348 0.19876 0.09886
MAPE 0.00442% 1.81424% 0.90656%
R2 0.42 0.32 0.17

The performance of the Random Forest model utiliz-
ing Min-Max scaling and empirical feature set 1, which
includes 'High’, 't-6’, 'Low’, 'Close-Seasonal-Moving-
Average-3’, and "Volume’, was initially evaluated. The
model exhibited strong performance on the training
data, achieving an R? value of 0.97, signifying its abil-
ity to capture the majority of the variance within the
dataset. However, its performance declined substan-
tially when applied to the validation and test datasets,
with R? values decreasing to 0.42 and 0.33, respec-
tively.
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This decline suggests the presence of overfitting, where
the model was overly tailored to the training data. The
root mean square error (RMSE) for the test data was
0.246, and the mean absolute error (MAE) was 0.188,
indicating error rates that remain within an acceptable
range. However,

the MAPE on the test data was relatively high at
27.79%, highlighting the model’s relative weakness in
accurately predicting actual values.

The XGBoost model, employing the Yeo-Johnson
transformation and empirical feature set 5, which
includes ‘Open-Seasonal-Moving-Average-3’,  ‘High-
Seasonal-Moving-Average-3’,  ‘Low-Seasonal-Moving-
Average-3’, ‘t-6’, ‘t-5’, ‘t-4’, ‘t-3’, ‘Volume’, ‘CPT’, and
‘Interest Rate’, was subsequently evaluated. This model
demonstrated superior performance, particularly on
the test dataset, achieving a root mean square error
(RMSE) of 0.12651 and a mean absolute error (MAE)
of 0.09886, indicating relatively low prediction errors.

Furthermore, the mean absolute percentage error
(MAPE) was 0.90656%, highlighting the model’s out-
performance compared to the other models in terms of
predictive accuracy.

Table 2: Deep Learning Model Results

Metric | Training | Validation | Test
ARMA-CNN-BIiLSTM Hybrid Model
RMSE 44.1554 25.6075 36.5494
MAE 31.1329 21.2240 26.5560
MAPE 0.0117% 0.0065% 0.0091%
R? 0.9916 0.9320 0.9726
CNN-BiLSTM Model
RMSE 63.36 70.66 48.41
MAE 43.77 65.49 36.93
MAPE 1.60% 2.00% 1.26%
R? 0.98 0.48 0.95

4.2 Discussion and Comparison

The hybrid ARMA-CNN-BiLSTM model was em-
ployed to predict stock index prices. The results ob-
tained from the model during the training, validation,
and testing phases demonstrate superior performance
compared to other models in this study.

A detailed examination of the results shows that the
hybrid model outperforms the CNN-BiLSTM model
across all evaluation metrics:

- Root Mean Squared Error (RMSE) in the testing
phase for the hybrid model was 36.5494, which is lower
compared to 48.41 in the CNN-BiLSTM model.

- Mean Absolute Error (MAE) in the testing phase
for the hybrid model was 26.5560, showing a reduction
from 36.93 in the CNN-BiLLSTM model.

- Mean Absolute Percentage Error (MAPE) for the
hybrid model in the testing phase was 0.0091%, signifi-
cantly lower than 1.26% in the CNN-BiLSTM model.

- Coefficient of Determination (R?) for the hybrid
model in the testing phase was 0.9726, higher than 0.95
in the CNN-BiLSTM model.

These findings underscore the effectiveness of the
ARMA-CNN-BiLSTM hybrid model in modeling and
forecasting the complex dynamics of the stock market,
positioning it as a reliable method for financial forecast-
ing. The substantial improvements in RMSE, MAE,
and MAPE, along with an increase in R2, confirm the
significant enhancements introduced by this new archi-
tecture. Optimization techniques such as PSO have
played a crucial role in improving the accuracy of these
models, leading to substantial improvements in the re-
sults.

The superior performance of machine learning and
hybrid models compared to the Random Walk model
suggests that prices do not solely follow random and
new information. Instead, more complex patterns are
embedded in market data, which advanced models are
capable of uncovering. This clearly challenges the Effi-
cient Market Hypothesis (EMH).

Table 3: Comparison of Random Forest Model for Test Results

Metric ‘ Test
Random Forest Model with JP Morgan Data Compared to Model in this Article
RMSE 0.29
MAE 0.21
MAPE 0.59%
R? 0.99
Random Forest Model with JP Morgan Data
RMSE 1.41
MAE -
MAPE 0.93%
R? -
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In the article cited as [11], the Random Forest model
was employed to predict the closing price of JPMorgan
stocks. This model relies on historical stock data to
forecast the next day’s closing price. The dataset used
comprises daily stock information spanning ten years,
including variables such as High, Low, Open, Close, Ad-
justed Close, and Trading Volume.

Standard error metrics such as Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error
(MAPE) were utilized to evaluate performance. The re-
sults indicate that the Random Forest model provided
relatively accurate predictions for JPMorgan’s closing
prices. However, a notable improvement in model accu-
racy has been observed with the Random Forest model
implemented in this article.

To enhance prediction accuracy, new variables were
derived from these primary data points, including the
difference between High and Low prices (H-L), the dif-
ference between Open and Close prices (O-C), and mov-
ing averages over 7, 14, and 21 days, along with a 7-day
standard deviation.

Specifically, the values of RMSE and MAPE in the
proposed model have decreased to 1.12 and 0.34, re-
spectively, demonstrating a significant enhancement in
performance, as shown in the comparison table.

Table 4: Comparison of XGBoost Model for Test Results

Metric ‘ Test
XGBoost Model with Microsoft Data Compared to Model in this Article
RMSE 0.0049
MAE 0.0045
MAPE 0.5383%
R? 0.9781
XGBoost Model with Microsoft Data
RMSE -
MAE 21.72
MAPE 16.87%
R2 -

In the study cited by [12], the XGBoost model was
employed with historical stock price information for Mi-
crosoft Corporation (MSFT). The variables employed in
this analysis include the date, lowest price, highest price,
opening price, closing price, adjusted closing price, and
trading volume. During the preprocessing stage, the data
were scrutinized for unwanted values or missing data to
ensure their suitability for modeling with XGBoost.

The dataset was divided into training (60%) and test-
ing (40%) subsets. Standard error metrics such as Mean
Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE) were used to evaluate the model’s perfor-
mance. Implementing the XGBoost model on this data
with the features detailed in Table 4 resulted in MAE and
MAPE values of 21.72 and 16.34, respectively.

Table 5: Comparison of CNN-BIiLSTM Model for Test Results

Metric ‘ Test
CNN-BiLSTM Model with Shanghai Composite Index data used in this article
RMSE 0.00855
MAE 0.0065
MAPE 91.006%
R? 0.9681
CNN-BiLSTM Model with Shanghai Composite Index data from other studies
RMSE 32.065
MAE 22.715
MAPE -
R2 0.9681
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In the study by Lu et al.[13], the CNN-BiLSTM
model was trained and tested on data from the Shanghai
Composite Index, consisting of 7,083 trading days. The
dataset includes features such as opening price, highest
price, lowest price, closing price, volume, and turnover.
The model utilized the first 6,083 days for training and
the final 1,000 days for testing.

The CNN-BILSTM-AM model leverages a combina-
tion of Convolutional Neural Networks (CNN), Bidirec-
tional Long Short-Term Memory (BiLSTM) networks,
and an Attention Mechanism (AM) for stock price pre-
diction. Initially, the stock data is standardized and fed
into the input layer. The CNN layer then extracts tem-
poral features, and the pooling layer reduces the dimen-
sionality of these features. The BiLSTM layer captures
temporal dependencies by analyzing bidirectional infor-
mation. The attention mechanism focuses on the rela-
tive importance of features at different times, improving
the accuracy of predictions by concentrating on key as-
pects. Finally, the output layer provides the predicted
closing stock price. This model demonstrates high ac-
curacy in price prediction through careful training and
feature optimization.

To evaluate model performance, standard error met-
rics such as RMSE, MAE, and R2 were used. When the
same data was applied to the CNN-BiLSTM model with
the features outlined in Table 5, and as described ear-
lier in this article, improvements were observed in the

RMSE, MAE, and R2 values.

In future research, it is suggested to explore advanced
techniques such as Vector Quantization and Deep Au-
toencoders, as applied by Zarringhalam et al. [14] for
loop closure detection optimization in SLAM systems.
Vector Quantization, with its ability to classify and clus-
ter data, can help analyze complex financial features
more effectively and uncover hidden patterns in finan-
cial data.

Additionally, Deep Autoencoders, with their capabil-
ity to compress large data sets and detect complex and
nonlinear patterns, could play a crucial role in improv-
ing prediction accuracy, particularly in volatile markets
such as the Shanghai Stock Exchange. These models
are highly suitable for identifying intricate relationships
between financial variables that traditional models may
not, capture.

Given the high volatility and complexity of the Shang-
hai Stock Exchange, employing these techniques either
as part of hybrid models or independently could signif-
icantly enhance forecasting accuracy. Moreover, inte-
grating these methods with existing models like ARMA-
CNN-BIiLSTM could help uncover hidden patterns and
nonlinear dynamics in financial markets. The utilization
of these techniques will not only enrich current models
but also open new avenues for improving stock price
prediction and risk management strategies.
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Future researchers can take significant steps towards
enhancing the accuracy and efficiency of financial fore-
casting models by focusing on these innovative tech-
niques.
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