
 

 
              

 

 

 

 

 

     
     

     

      
      

    

      
      

       
  

      
       

      

    
    

     
      

       

     
   

     
        

     
    

      
     

      

 

        

temperature has risen by more than 1.2 °C compared to
the  pre-industrial  era  [2].  Climate  change  [3]  has  been
associated  with  rising  global  temperatures,  leading  to
more frequent and intense extreme weather occurrences
[4]. Coastal areas are facing numerous challenges due to
climate warming and the rapid rise in sea levels. These
challenges  include  the  risk  of  flooding,  erosion,
heightened  ecological  vulnerability,  and  other  harmful
transformations.  To  effectively  protect  and  minimize
these impacts, it is crucial to gain a deeper understanding
of  how  coasts  respond  to  changes  in  sea  levels  [5].
Satellite  altimetry  (SA)  faces  a  significant  obstacle  in
obtaining  precise  sea  surface  information  by  detecting
radar  echoes  along  the  Earth's  surface,  also  known  as
track  height  data  near  the  shoreline,  particularly  in  sea
areas  with  complex  landforms  [6].  The  fundamental
principle of radar altimetry involves the measurement of
the  time  it  takes  for  a  microwave  radar  pulse  to  travel
from  the  antenna  to  the  surface  of  the  Earth.  Valuable
information can be  obtained by determining this range,
which  represents  the  distance  between  the  satellite  and
the Earth's surface. For over three decades, this method
has  been  employed  to  investigate  various  aspects  of
physical  oceanography,  including  ocean  surface
topography,  marine  gravity,  ocean  circulation,
bathymetry,  and  sea-level  rise  [7].  Additionally,  in
contrast to imaging sensors, altimeters serve as profiling
systems, gathering information by detecting radar echoes
along  the  Earth's  surface,  also  known  as  tracks.  These
radar echoes are captured as waveforms, which represent
a  histogram  of  energy  reflected  by  the  ground  surface
over time. While satellite altimetry has been extensively
utilized in  hydrological  and  cryosphere  studies, limited
research  has  focused  on  lake  ice,  particularly  in
comparison to sea ice and the measurement of lake water
levels  [8].  The  altimeters  on  Sentinel-3A  and  -3B  are
special  because  they  are  the  first  ones  globally  to  use
delay-doppler  (SAR)  mode  everywhere  on  Earth.  This
helps get a clearer view of the Earth's surface and reduces
noise  through  a  technique  called  multi-looking.  The
radiometer, which looks  straight down (nadir),  has two
channels.  Regular  checks  on  the  instruments  involve
looking  at  their  telemetered  data,  calibrating  them  at
specific  places,  and  comparing  their  readings  with

 

 

 

 

Advancing Ocean Level Prediction with Machine Learning
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Abstract

Effectively  monitoring  sea  surface  height  (SSH)
presents  a  considerable  contemporary  challenge.  By
proposing an integrated approach, this paper indicates
the  specific  complexities  associated  with  SSH
monitoring in the Oman SeaThe methodology involves
using  radar  altimetry  data  from  Sentinel-3A,  along
with  meteorological  parameters  such  as  sea  surface
pressure,  temperature,  precipitation,  and  seawater
vapor obtained from Google Earth Engine cloud-based
platform  (GEE).  The  acquired  data  from  Sentinel-3A
is  meticulously  corrected  and  analyzed  to  provide
accurate  and  insightful  insights  into  SSH  within  the
specified  region,  focusing on the 4-month year 2023.
This  integrated  approach  enhances  the  precision  and
reliability  of  sea  surface  height  monitoring  in  the
challenging  maritime  environment  of  the  Oman  Sea.
The research compares their efficacy in predicting SSH
using  machine  learning  algorithms,  including
Multilayer  Perceptron,  Support  Vector  Regression,
Random  Forest,  Gradient  Boosting,  and  K-Nearest
Neighbors.  Among  these,  the  Random  Forest  model
presents the better Mean Absolute Error of 0.0554, R-
squared value of 0.9818, Root Mean Squared Error of
0.1101,  and  Mean  Squared  Error  of  0.0121.  This
affirms the model's exceptional accuracy in capturing
sea  surface  height  dynamics,  emphasizing  the
significance  of  incorporating  meteorological
parameters  for  a  comprehensive  understanding  and
accurate  prediction  of  SSH  in  the  Oman  Sea.  The
findings  suggest  potential  applications  in  improving
operational  oceanographic  forecasting  and  advancing
our  knowledge  of  the  intricate  interactions  between
meteorological  conditions  and  sea  surface  height
variations.

Keywords:  Sea  surface  height,  Radar  altimetry  data,
Oman, GEE, Sentinel-3A.

1  Introduction

Global warming is now a major concern worldwide [1].
Over  the  past  ten  years,  the  average  global  surface
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models, on-site measurements, and other satellites. All 
of this is done to keep an eye on daily data production, 
figure out uncertainties and errors, and understand how 
well they work in the long run for climate science [9]. 
Regarding the need for Sea Surface Height (SSH) 
Monitoring the Sentinel-3 mission consists of two 
satellites, namely Sentinel-3A and Sentinel-3B. Both 
satellites have the same instruments, including a dual-
frequency synthetic aperture radar altimeter (SRAL) 
and a dual-band passive MWR [10]. The Sentinel-3 
payload includes a synthetic aperture radar altimeter  

 (SRAL) that operates at both C and Ku-band 
frequencies. The SRAL instrument has two 
measurement modes: low-resolution mode (LRM) and 
SAR mode. In SAR mode, the SRAL instrument emits 
64 bursts of Ku-band pulses flanked by two C-band 
pulses, offering an along-track resolution of 
approximately 300 meters. This study exclusively 
utilized data obtained at the Ku-band frequency [11]. 
Furthermore, by employing remote sensing techniques, 
we can integrate GIS technology [12,13] to improve our 
capacity for establishing connections between features 
and data. Weather information obtained from Google 
Earth Engine (GEE) is utilized to analyze the 
variations[14]. 

 
2 Material and Methods 

European Organisation for the Exploitation of 
Meteorological Satellites (EUMETSAT) provided 
Radar altimetry data for sea surface monitoring [15]. In 
this study, the SRAL Level 2 Altimetry Global - 
Sentinel-3A, available from 10 March 2023 (Ku band), 
was employed for monitoring. SRAL level-2 data 
includes standard altimetry measurements like 
altimeter range, sea surface height, wind speed, and 
significant wave height. More of these data are in net 
CDF (network Common Data Form) format [16]. 
Furthermore, data were extracted from April and July 
2023, additionally, they were processed to obtain 
reliable data for monitoring SSH. Additionally, 
environmental parameters such as water evaporation, 
precipitation, sea surface temperature, and sea surface 
air pressure were examined to indicate their 
performance in monitoring.  The data mentioned 
previously were used to model SSH in the Oman Sea. 
Moreover, environmental parameters were prepared for 
April and July via the Google Earth Engine cloud-based 
platform which is a powerful platform for remote 
sensing analysis especially for water body monitoring 
[17,18] in the same period. Recent advancements in 
machine learning (ML) techniques [19] especially 
Random Forest (RF) is a powerful machine learning 
algorithm that can assess the significance of predictor 
variables and produce highly precise results without 

encountering the overfitting issue [20]. KNN, Gradient 
Boosting, SVR, MLP, and RF models were employed to 
model water height based on these parameters which are 
presented in Table 1. 

 
  Table 1:  Environmental Parameters which were used in this 

study 

 

2.1 Study area 

The Sultanate of Oman, boasting a coastal stretch of over 
3000 km along the Arabian Sea, the Sea of Oman, and 
the Arabian Gulf, faces environmental challenges due to 
the escalating intensity of storms attributed to global 
climate change. Coastal inundation has become 
inevitable, and the extent of flooding is influenced by the 
geomorphologic and oceanographic characteristics of 
the coastal zone. Despite the complex coastal ecology 
shaped by two monsoon seasons and substantial nutrient 
injection, Oman is undergoing rapid development fueled 
by fossil hydrocarbon exploitation. Economic 
diversification efforts in tourism, fisheries, aquaculture, 
and port services necessitate extensive shore 
infrastructure development, posing a threat to the coastal 
environment. While regulations are in place, 
enforcement is challenging due to the lengthy coastline 
and swift economic development. Unique features, 
including a robust summer thermocline, may offer some 
protection against excessive temperatures, but the rise of 
the thermocline poses a risk of hypoxic water intrusion, 
potentially leading to increased mortalities in shallow 
communities. Global changes are anticipated to impact 
Oman, albeit with distinctive features making it less 
vulnerable compared to other parts of the Indian Ocean. 
[21,22]. 

Sea Surface Meteorological 
Parameters  

Missions 

Sea Surface Height SRAL Level 2 Altimetry 
Global - Sentinel-3  

Sea Surface Temperature MODIS/006/MOD11A2 
Sea Surface Pressure NCEP_RE/sea_level_pressure 
Sea Surface Precipitation chirps 
Sea Surface Water Vapor NCEP_RE/surface_wv 
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Figure 1: Study area 

 
2.2 Methodology  

The methodology employed in this paper is elucidated in the 
following sections, providing a comprehensive and detailed 
insight into the approaches, techniques, and procedures 
adopted for the research. The step-by-step explanation covers 
various aspects, including data collection, processing, 
analysis, and modeling, ensuring a thorough understanding of 
the methodology's intricacies. This comprehensive exposition 
aims to facilitate clarity and transparency, allowing readers to 
grasp the nuances of the research methodology employed in 
this study. 

 

 

Figure 2: Methodology  
 

3 Results and discussion 
 

K-NN, SVR, MLP, RF, and Gradient Boosting (GB) 
algorithms in our study have opted to indicate that machine 
learning methods can be successfully applied for predictions 
[23,24].   
By preprocessing altimetry SRAL Level2 data and providing 
meteorological parameters using satellite imagery [25] which 
was prepared by GEE, we gathered the required data for 
modeling them with the mentioned algorithms. Moreover, all 
provided data were put into ArcMap 10.8 [26] so that it's all 
the same size and the algorithms can understand it better. 80% 

of data is used for training and 20% for testing [27]. Regarding 
the compatibility between the real data and the predicted data 
for All, Train, and Test data which is indicated in Figure 3, The 
length of the graphs represents the actual or observed value and 
the width represents the predicted value.  

 

 
 
Figure 3: Compatibility between the real data and the predicted for 

All, Train, and Test data of KNN, RF, Gradient Boosting, MLP, 
and SVR models. 

 

3.1 Histograms of residuals 
 

  Histograms of residuals were generated for the Random 
Forest     (RF), MLP, Gradient Boosting, SVR, and K-NN 
models to visually represent the distribution of differences 
between predicted and actual values. In a rigorous 
scientific analysis, a well-centered and symmetric 
histogram is indicative of accurate predictions, suggesting 
that the models align closely with observed values. 
Conversely, the presence of patterns or skewness in the 
histogram may signal potential limitations or biases within 
the models, warranting further scrutiny and refinement. 
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These histograms serve as a valuable tool for assessing 
the predictive performance and reliability of the 
machine-learning algorithms employed in the study [28]. 
Residuals in the proportional hazards model proposed by 
Cox (1972) are employed for testing the assumption of 
proportional hazards. These residuals can be graphically 
plotted against time to assess the validity of the 
proportional hazards assumption. Furthermore, 
histograms of these residuals serve as a diagnostic tool to 
scrutinize the model fit and identify any potential outliers 
in covariate values[29]. 

 
Figure 4: Residual of distribution for SVR(A), RF (B),  KNN 

(C), MLP (D), and GB (E) models. 
 
 

3.2   Accuracy Assessment 

The obtained results demonstrate commendable performance from 
all algorithms, with R2 values exceeding 0.92 across models. 
Notably, the Random Forest (RF) model outshone others with a 
MAE of 0.0554, an impressive R2 value of 0.9818, an RMSE of 
0.1101, and an MSE of 0.0121. In contrast, SVR exhibited the 
lowest accuracy, achieving an R2 of 0.9297, a MAE of 0.1456, an 
MSE of 0.0471, and an RMSE of 0.2171. The evaluation of 
predictive capabilities involved the utilization of Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), R-squared (R2), 
and Mean Squared Error (MSE) [30]. 
 

  
 

In the following formulas, y^ and y represent the average 
values of the actual output and predicted output 

respectively. yi
^ and yi represent the true value and 

predicted value at a specific moment. n denotes the length 
of the training samples. Res SS refers to the sum of squares 
of the residuals and tot SS represents the total sum of 
squares of the real data [31]. The variable n signifies the 
length of the training samples. Res SS corresponds to the 
sum of squares of the residuals, and tot SS represents the 
total sum of squares of the real data, as detailed in 
reference. This explanation provides an expanded 
elucidation of the symbols and terms used in the formulas, 
enhancing comprehension of their significance within the 
context of the study.    

Table 2: Illustrating R², MSE, RMSE, and MAE for each model 
(cm). 

Model Dataset MAE MSE RMSE R-
squared 

SVR All Data 0.145 0.047 0.217 0.929 

SVR Train 0.144 0.046 0.216 0.93 

SVR Test 0.147 0.048 0.219 0.929 

Random 
Forest 

All Data 0.055 0.012 0.11 0.981 

Random 
Forest 

Train 0.037 0.004 0.069 0.992 

Random 
Forest 

Test 0.097 0.029 0.171 0.956 

MLP All Data 0.154 0.048 0.22 0.927 

MLP Train 0.153 0.047 0.219 0.928 

MLP Test 0.157 0.049 0.223 0.926 

k-NN All Data 0.094 0.025 0.158 0.962 

k-NN Train 0.087 0.021 0.147 0.967 

k-NN Test 0.11 0.033 0.182 0.951 

Gradient 
Boosting 

All Data 0.155 0.047 0.216 0.929 

Gradient 
Boosting 

Train 0.154 0.046 0.215 0.93 

Gradient 
Boosting 

Test 0.157 0.048 0.219 0.929 

All applied machine learning algorithms, including Support 
Vector Regression (SVR), Random Forest, Multi-layer Perceptron 
(MLP), k-Nearest Neighbors (k-NN), and Gradient Boosting, 
demonstrated exceptional performance, as outlined in Table 2. The 
performance metrics, encompassing Mean Absolute Error (MAE), 

                    MAE (y^ , y) =  
1

 𝑛
∑ |𝑦^ −  𝑦|𝑛

𝑖=1  

 

                   MSE (y^ , y) =  
1

𝑛
∑ (𝑦𝑖

^,𝑦𝑖 )2𝑛
𝑖=1  

 

                  𝑅𝑀𝑆𝐸(y^ , y) = 𝑅ට
1

𝑛
∑ (𝑦𝑖

^,𝑦𝑖 )2𝑛
𝑖=1    

 

                  R2 (y^ , y) = 1 −
𝑆𝑆𝑟𝑒𝑠 (𝑦^ ,𝑦) 

𝑆𝑆𝑡𝑜𝑡 (𝑦^ ,𝑦)
  

A B C D E 
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Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
and R-squared, were thoroughly assessed for each model across 
the entire dataset, training subset, and testing subset. Notably, the 
Random Forest model exhibited superior accuracy with lower 
MAE, MSE, and RMSE, coupled with a notably high R-squared 
value of 0.981 on the entire dataset, affirming its effectiveness in 
predicting sea surface height. This underscores the influence of 
meteorological parameters on the precision of sea surface height 
predictions, emphasizing the reliability of SRAL Level 2 data. 
Consequently, the study strongly recommends continuous 
monitoring of sea surface height under diverse spatiotemporal 
conditions, acknowledging the potential impact of climate 
change. 

 

4. CONCLUSIONS AND RECOMMENDATIONS 
 
      SSH monitoring has become increasingly important due to 

global warming. Moreover, various missions have provided 
Altimetry data for monitoring sea surface height or water 
level since 1978. This study used SRAL Level 2 Altimetry - 
Sentinel-3 in 2023 to monitor SSH in the Oman Sea from 
April to July. Machine learning algorithms were used to 
monitor SSH based on four meteorological parameters: 
precipitation, temperature, water vapor, and air pressure. The 
algorithms used in this study included MLP, RF, Gradient 
Boosting, K-NN, and SVR. The results showed that all 
models performed well, with RF producing the best R2 of 
0.9819 and generating histograms of residuals, for all 
models, to visualize the distribution of differences between 
predicted and actual values. The residual histograms for each 
model based on altimetry data were also presented. This 
study has important implications for monitoring SSH and 
preventing potential crises in coastal areas throughout the 
year. 
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