The First International Conference on
Machine Learning and Knowledge Discovery (MLKD 2024)
Amirkabir University of Technology, December 18-19, 2024 <

Re-evaluation and Validation of Graph Neural Network for Predicting
Drug-Target Binding Affinity *

Kowsar Ghomit

Abstract

In recent years, the increasing complexity of drug dis-
covery has stimulated the need for advanced computa-
tional methods that can effectively predict drug-target
interactions. Many and various methods are trying to
be presented to improve the problem and reduce time
and cost, and among these methods, the GraphDTA
method using graph neural networks has succeeded in
reducing the cost and time to provide new information.
In this paper, according to the dataset provided in
GraphDTA, we measure the validity of this method us-
ing different evaluation criteria and prove its effective-
ness. The results of applying different evaluation cri-
teria to measure the accuracy of this method and to
choose the best model in this case have been compared
with each other.

Keywords: Bioinformatics, Predicting drug-target
binding affinity, Graph Neural Networks

1 Introduction

The successful development of new therapeutics hinges
on the ability to predict drug-target binding affinities
accurately, as these interactions are critical to under-
standing pharmacodynamics and ligand efficacy. Tra-
ditional methods of predicting binding affinity have of-
ten relied on linear models, molecular descriptors, and
empirical interactions that fail to capture the complex,
non-linear relationships and conformational variations
inherent in biological systems. With the advent of
machine learning and artificial intelligence, there has
been a significant shift towards more sophisticated ap-
proaches that can handle these complexities, especially
in the realm of drug discovery.

Graph Neural Networks (GNNs) have emerged as a
promising solution due to their capacity to process data
structured as graphs, thereby retaining the relational in-
formation between atoms and molecular substructures.

*This research has beem facilitated by the Data Science Lab
of the Faculty of Mathematical Sciences at Alzahra University.

fDepartment of Computer Science, Faculty of Math-
ematical Sciences, Alzahra University, = Tehran, Iran.,
kousar1377_18@yahoo.com

fCorresponding autho: Department of Computer Science, Fac-
ulty of Mathematical Sciences, Alzahra University, Tehran, Iran.,
b_sadeghi_b@alzahra.ac.ir

85

Bahram Sadeghi Bigham?

In the context of drug discovery, GNNs enable the rep-
resentation of both drug compounds and target pro-
teins as graphs, where nodes correspond to atoms (or
amino acids) and edges reflect chemical bonds (or pep-
tide links). This framework allows for a more holistic
understanding of the molecular interactions that dictate
binding affinities.

In this paper, we introduce GraphDTA, a dedi-
cated framework designed to predict drug-target bind-
ing affinities using GNNs. GraphDTA not only ad-
dresses the limitations of previous predictive models
but also incorporates various molecular features and
leverages high-dimensional biological data more effec-
tively. We demonstrate its capabilities on established
benchmark datasets, showcasing how GraphDTA at-
tains superior predictive performance compared to ex-
isting methods. Additionally, we explore the inter-
pretability of the model, illuminating key factors influ-
encing drug-target interactions.

Through this research, we aim to contribute to the
field of computational drug discovery, offering a robust
tool that assists researchers in the design and optimiza-
tion of new therapeutics. By embedding our approach
in the fast-evolving landscape of GNNs, we hope to pave
the way for improved predictions and deeper insights
into the drug discovery process. In the following sec-
tions, we will discuss the set of methods used and the
proposed framework in the third section, the analysis of
the results in the fourth section, and the discussion and
conclusions.

2 Research Background

Moulard et al. estimated the cost of developing a new
drug at $2.6 billion [23]. Also, Ashburn and Thor high-
lighted that while FDA approval for a new drug takes
about 10 to 17 years, new applications for approved
drugs prevent the lengthy, costly, and safety-related is-
sues associated with drug development[2].

Deshpande et al. deemed comprehensive searches im-
possible due to the existence of millions of similar com-
pounds and utilized classification algorithms to predict
whether chemical compounds had desirable biological
activity and to filter similar compounds from large li-
braries [12].

Corsello and Iskar et al. found a strong incentive



to create computational models that can estimate the
interaction strength of drug-target pairs based on pre-
vious assays[9, 19]. Le et al. proposed an approach that
predicts the stable three-dimensional structure of the
drug-target complex through a scoring function[22]. He
et al. pointed out that since the molecular docking ap-
proach requires knowledge of the crystallized structures
of proteins—often unavailable—they used a collabora-
tive filtering approach, including SimBOOST, which
employs similarity in binding affinities between drugs
and targets to create new features as input for a gra-
dient boosting machine to predict binding affinity for
unknown drug-target pairs[17].

Cichonska et al. noted that similarities could be
sourced from alternative resources rather than solely re-
lying on experimental proximities, for instance, kernel-
based methods that generate kernels from molecu-
lar descriptors of drugs and targets using regular-
ized least squares regression (RLS). The KRonRLS
method predicts relational closeness and utilizes simi-
larity scores for each drug-target pair through a drug-
drug and target-target similarity matrix, demonstrating
high performance[17, 18].

Chu.Y et al. introduced a new prediction method for
drug-target interactions to improve performance based
on a deep forest model (CDF), named DTI-CDF, uti-
lizing features based on multiple similarities between
drugs and targets, along with proteins extracted from a
heterogeneous graph containing known DTIs[5].

DTIs are a significant step for drug discovery and
repositioning, and various computational methods, par-
ticularly binary classification, have been developed,
though improvements are needed, which multi-label
learning can facilitate to reduce the issues in binary
classification performance, which is handled with the
DTI-MLCD approach[6].

Ozkurt et al. proposed another approach, includ-
ing DeepDTA and WideDTA, which is the model de-
veloped by DeepDTA and utilizes networks trained on
one-dimensional drug representations and protein se-
quences. Since drugs can be represented using com-
mon substructures, Wozniak et al. suggested PADME,
which is based on deep neural networks for predicting
interactions between compounds and protein features
effectively. Meyer et al. regarded deep learning models
as the best predictors for DTA and the most successful
machine learning techniques on a broad spectrum|[24].

However, these models represent drugs as strings,
which is not a natural way to depict molecules, leading
to the loss of structural information and impairing pre-
dictive power. In this paper, we propose GraphDTA[26],
capable of modeling drugs as molecular graphs that con-
siders the DTA prediction task as a regression task,
where the input is a drug-target pair, and the output is
a continuous measurement of binding affinity. Among
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Figure 1: GraphDTA architecture[26].

all proposed models, it delivers superior and advanced
performance.
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Figure 2: redundancy analysis triplot for the 128 drug
latent variables regressed with 38 JoeLib molecular de-
scriptors. (Left) the activation of two latent variables
plotted against the number of aliphatic OH groups in
that drug. (Right) [30]

2.1 Drug-Target Binding Affinity Prediction

Drug-target binding affinity refers to the strength of
interaction between a drug molecule and its biologi-
cal target, typically a protein. The binding affinity
is a crucial parameter that determines the pharmaco-
logical effectiveness of a drug. Traditional approaches
to predict binding affinity include molecular docking,
which simulates the interaction between a drug and
its target, and quantitative structure-activity relation-
ship (QSAR) models, which correlate chemical struc-
ture with biological activity (Rogers et al., 2016). How-
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ever, these methods often face limitations in terms of
scalability and accuracy, prompting the exploration of
advanced computational techniques[27].

2.2 Machine Learning in Drug Discovery

Machine learning has revolutionized the field of drug
discovery by enabling the analysis of large datasets and
the identification of patterns that may not be appar-
ent through traditional methods. Early machine learn-
ing models for predicting binding affinity primarily re-
lied on feature engineering, where molecular descriptors
were manually extracted from chemical structures [33].
However, these approaches often struggled with the in-
herent complexity of molecular data, leading to subop-
timal predictive performance. Recent advancements in
deep learning have addressed some of these limitations
by automating feature extraction and learning hierar-
chical representations of molecular structures. Convo-
lutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) have been employed to model the se-
quential nature of molecular data, achieving promising
results in various predictive tasks [20]. Despite their
successes, these architectures often fail to capture the
relational information inherent in molecular graphs, ne-
cessitating the development of more sophisticated mod-
els.

2.3 Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as a
transformative approach for modeling molecular struc-
tures due to their ability to represent data as graphs,
where nodes correspond to atoms and edges represent
bonds [3]. This representation allows GNNs to effec-
tively capture the local and global structural proper-
ties of molecules, making them particularly suitable for
tasks related to drug discovery, including binding affin-
ity prediction.

GNN s operate through a message-passing mechanism,
where information is propagated between neighboring
nodes. This enables the model to learn complex inter-
actions within the molecular graph, leading to improved
predictive performance. Several studies have demon-
strated the efficacy of GNNs in various drug discovery
tasks. For instance, introduced a GNN framework that
achieved state-of-the-art results in predicting molecular
properties, highlighting the model’s ability to generalize
across different chemical spaces[16].

2.4 Deep learning on molecular graphs

Having the drug compounds represented as graphs, the
task now is to design an algorithm that learns effectively
from graphical data. The recent success of CNN in com-
puter vision, speech recognition and natural language
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processing has encouraged research into graph convolu-
tion. A number of works have been proposed to handle
two main challenges in generalizing CNN to graphs: (i)
the formation of receptive fields in graphs whose data
points are not arranged as Euclidean grids, and (ii) the
pooling operation to down-sample a graph. These new
models are called graph neural networks.

In this work, we propose a new DTA prediction model
based on a combination of graph neural networks and
conventional CNN. Figure 1 shows a schematic of the
model. For the proteins, we use a string of ASCII char-
acters and apply several 1D CNN layers over the text
to learn a sequence representation vector. Specifically,
the protein sequence is first categorically encoded, then
an embedding layer is added to the sequence where each
(encoded) character is represented by a 128-dimensional
vector. Next, three 1D convolutional layers are used to
learn different levels of abstract features from the input.
Finally, a max pooling layer is applied to get a repre-
sentation vector of the input protein sequence. This ap-
proach is similar to the existing baseline models. For the
drugs, we use the molecular graphs and trial four graph
neural network variants, including GCN, GAT, GIN and
a combined GAT-GCN architecture, all of which we de-
scribe below[32, 33, 31].

2.4.1 Variant 1: GCN-based graph representation
learning

In this work, we focus on predicting a continuous value
indicatingthe level of interaction of a drug and a pro-
tein sequence. Each drugis encoded as a graph and each
protein is represented as a string ofcharacters. To this
aim, we make use of GCN model [32] for learning on
graph representation of drugs. Notethat, however, the
original GCN is designed for semi-supervisednode clas-
sification problem, i.e. the model learns the node-level
feature vectors. For our goal, to estimate the drug-
protein interaction, agraph-level representation of each
drug is required. Common techniques to aggregate the
whole graph feature from learned node features include
Sum, Average and Max Pooling. In our experiments,
the use of Max Pooling layer in GCN-based GraphDTA
usually results in better performance compared to that
of the remaining. Formally, denote a graph for a given
drug as G = (V, E) , whereV is the set of N nodes each
is represented by a C-dimensional vectorand E is the set
of edges represented as an adjacency matrix A. Amulti-
layer graph convolutional network (GCN) takes as in-
put anode feature matrix X € RVN*¢ (N = |V|, C :
the number of featuresper node) and an adjacency ma-
trix A € RM*N. then produces anode-level output
Z € RN*F (F: the number of output features pernode).
A propagation rule can be written in the normalized



form forstability, as in[32]:
it = g(ﬁ%gﬁ§H(L)W(L)) (1)

where A = A + IN is the adjacency matrix of the
undirected graph with added self-connections, D;; =
> A, H'! € RVNXC ig the matrix of activation in the
Ith layer, H° = y, o is an activation function, and W is
learnable parameters.

A layer-wise convolution operation can be approxi-
mated, as in [32]:

Z=D3AD*X® (2)

where @ € RE*F (F: the number of filters or feature
maps) is the matrix of filter parameters.

Note that, however, the GCN model learns node-level
outputs Z € RV*F. To make the GCN applicable to
the task of learning a representation vector of the whole
graph, we add a global max pooling layer right after the
last GCN layer. In our GCN-based model,we use three
consecutive GCN layers, each activated by a ReLUfunc-
tion. Then a global max pooling layer is added to obtain
thegraph representation vector.

2.4.2 Variant 2: GAT-based graph representation
learning

Unlike graph convolution, the graph attention network
(GAT)[33] proposes an attention-based architecture to
learn hidden representations of nodes in a graph by ap-
plying a selfattention mechanism. The building block
of a GAT architecture is a graph attention layer. The
GAT layer takes the set of nodes of a graph as input,
and applies a linear transformation to every node by a
weigh matrix W. For each input node i in the graph,
the attention coefficients between i and its first-order
neighbors are computed as:

a(wz;, wz;)

This value indicates the importance of node j to node
i. These attention coeflicients are then normalized by
applying a soft-max function, then used to compute the
output features for nodes o(3_ ¢ ;) @ijw;) where o(c)
is a non-linear activation function and a;; are the nor-
malized attention coefficients.

In our model, the GAT-based graph learning archi-
tecture includes two GAT layers, activated by a ReLU
function, then followed a global max pooling layer to
obtain the graph representation vector. For the first
GAT layer, multi-head-attentions are applied with the
number of heads set to 10, and the number of output
features set to the number of input features. The num-
ber of output features of the second GAT is set to 128.

2.4.3 Variant 3: graph isomorphism network (GIN)

The GIN [32] is newer method that supposedly achieves
maximum discriminative power among graph neural

networks.  Specifically, GIN uses a multi-layer per-
ceptron (MLP) model to update the node features as.
mip((1+ €)zi + > i) j € B;

where is either a learnable parameter or a fixed scalar,
x is the node feature vector and B(i) is the set of nodes
neighboring i.

In our model, the GIN-based graph neural net con-
sists of five GIN layers, each followed by a batch nor-
malization layer. Finally, a global max pooling layer is
added to obtain the graph representation vector.

2.4.4 Variant 4: GAT-GCN combined graph neural
network

We also investigate a combined GAT-GCN model.
Here, the graph neural network begins with a GAT layer
that takes the graph as input, then passes a convolved
feature matrix to the subsequent GCN layer. Each layer
is activated by a ReLU function. The final graph rep-
resentation vector is then computed by concatenating
the global max pooling and global mean pooling layers
from the GCN layer output.

2.5 GraphDTA: A Novel Approach to Drug-Target
Binding Affinity Prediction

Building upon the success of GNNs, the GraphDTA
framework was specifically designed for predicting drug-
target binding affinities. GraphDTA integrates both
drug and target information into a unified graph rep-
resentation, allowing for the simultaneous modeling of
both components in the binding interaction. This dual-
graph approach enhances the model’s ability to capture
the intricate relationships between drugs and their tar-
gets, leading to more accurate predictions [26].

In GraphDTA, the drug is represented as a molec-
ular graph, while the target protein is encoded us-
ing a sequence-based representation, such as embed-
dings derived from protein sequences. The model em-
ploys a multi-layer GNN architecture that iteratively
updates node representations through message passing,
ultimately producing a binding affinity score. The re-
sults of GraphDTA indicate significant improvements
over traditional methods and even other machine learn-
ing approaches, demonstrating the potential of GNNs
in drug discovery

2.6 Comparison with Existing Methods

The performance of GraphDTA has been benchmarked
against various existing methods, including molecular
docking and traditional machine learning models. In
comparative studies, GraphDTA consistently outper-
formed these methods in terms of predictive accuracy
and generalization to unseen data [26]. The ability of
GraphDTA to leverage both structural and sequential
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information sets it apart from other approaches, provid-
ing a more holistic view of the drug-target interaction
landscape.

Moreover, the scalability of GraphDTA allows it to
be applied to large-scale datasets, making it a valuable
tool for high-throughput screening scenarios. As the
availability of chemical and biological data continues to
grow, the need for robust predictive models becomes
increasingly critical. GraphDTA addresses this need by
offering a flexible and efficient framework for binding
affinity prediction.

2.7 One-hot encoding

One-hot encoding has been used in previous works to
represent both drugs and proteins, as well as other bio-
logical sequences like DNA and RNA. This paper tests
the hypothesis that a graph structure could yield a bet-
ter representation for drugs, and so only drugs were
represented as a graph. Although one could also rep-
resent proteins as graphs, doing so is more difficult be-
cause the tertiary structure is not always available in a
reliable form. As such, we elected to use the popular
one-hot encoding representation of proteins instead.
For each target in the experimented datasets, a protein
sequence is obtained from the UniProt database using
the target’s gene name. The sequence is a string of
ASCII characters which represent amino acids. FEach
amino acid type is encoded with an integer based on its
associated alphabetical symbol [e.g. Alanine (A) is 1,
Cystine (C) is 3, Aspartic Acid (D) is 4 and so on], allow-
ing the protein to be represented as an integer sequence.
To make it convenient for training, the sequence is cut
or padded to a fixed length sequence of 1000 residues.
In case a sequence is shorter, it is padded with zero val-
ues.

These integer sequences are used as input to the em-
bedding layers which return a 128-dimensional vector
representation. Next, three 1D convolutional layers are
used to learn different levels of abstract features from
the input. Finally, a max pooling layer is applied to get
a representation vector of the input protein sequence.

2.8 Benchmark

To compare our model with the state-of-the-art Deep-
DTA [24] and WideDTA models, we use the same
datasets from the [24] benchmarks: e« Davis contains
the binding affinities for all pairs of 72 drugs and 442
targets, measured as Kd constants and ranging from 5.0
to 10.8 [10]. Kiba contains the binding affinities for 2116
drugs and 229 targets, measured as KIBA scores and
ranging from 0.0 to 17.2 [28]. To make the comparison
as fair as possible, we use the same set of training and
testing examples from [24], as well as the same perfor-
mance metrics: Mean Square Error (MSE, the smaller
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the better) and Concordance Index (CI, the larger the
better). For all baseline methods, we report the per-
formance metrics as originally published in [24]. The
hyperparameters used for our experiments are summa-
rized in Table 1. The hyper-parameters were not tuned,
but chosen a priori based on our past modeling experi-
ence.

Table 1: Hyper-parameters for different graph neural
network variants used in our experime

Hyper-parameters | setting
Leraning Rate 0.0005
Batch size 512
Optimizer Adam
GCN layers 3
GIN layers 5
GAT layers 2
GAT-GCN layers 2

Table 2: Comparison of evaluation criteria to choose the

best model

Dataset name Model MAE MSE RMSE R?

Davis GAT 0.3903 0.2335 0.4832  0.8992
Davis OCN 0.3887 0.2393 0.4861  0.895
Davis GIN 0.3899 0.2364 0.4892  (.8949
Davis GAT-OCN  0.3932  0.253 0.503  0.8875
KIBA GAT 0.4035 0.2499 0.4999 0.8779
KIBA OCN 0.3959  0.245 0.4949 0.8804
KIBA GIN 0.4002  0.2515  0.5015  0.8871
KIBA GAT-OCN  0.3925 0.2530  0.503  0.8764

Table 3: Comparison of evaluation criteria to choose the

best model
Dataset name Model Pearson Correlation Max Error  Explained Variance Spearman Correlation
Davis GAT 0.9511 1.316 0.8967 0.9474
Davis OCN 0.9578 1.263 0.9012 0.9574
Davis GIN 0.9535 1.211 0.8958 0.9488
Davis GAT-OCN 0.9521 1.448 0.8911 0.9470
KIBA GAT 0.9424 1.094 0.8787 0.9397
KIBA OCN 0.9535 1.539 0.886 0.9611
KIBA GIN 0.9452 1.235 0.8779 0.9367
KIBA GAT-OCN 0.9381 1.348 0.8774 0.9407

1. MAE (Mean Absolute Error):
MAE measures the average magnitude of the errors in
a set of predictions, without considering their direction.
It’s the average over the test sample of the absolute
differences between prediction and actual observation.

1 n
MAE = — i — Ui
”;:1 lys — Uil

Lower values indicate a better fit. It’s robust to outliers
compared to MSE.

2. MSE:

evaluates the average of the squares of the errors,
that is, the average squared difference between the
estimated values and the actual value.
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MSE = — — )2
S nE(y i)

i=1

It penalizes larger errors more than smaller ones due to
squaring. Lower values are better, and it’s sensitive to
outliers.

3. RMSE (Root Mean Squared Error):

RMSE is the square root of MSE. It gives the error in
the same units as the output variable.

RMSE =

Like MSE, lower values indicate a better fit, and it
retains the interpretation of errors in the original units.
4. R? (Coeflicient of Determination):

R? indicates the proportion of the variance in the
dependent variable that is predictable from the inde-
pendent variables.

SSres

2
—1—
R SStor

Where SS,¢s is the residual sum of squares and SS;.y is
the total sum of squares.

Values range from 0 to 1; a higher value indicates a
better model. An R? of 0 means the model does not
explain any of the variance, while an R? of 1 means it
explains all the variance.

5. Pearson Correlation Coefficient:

This measures the linear correlation between two
variables, providing a value between -1 and 1.

. Cov(X,Y)

0X0y

Where Cov(X,Y) is the covariance of X and Y, and o
are the standard deviations.

Values close to 1 indicate a strong positive correlation,
values close to -1 indicate a strong negative correlation,
and 0 indicates no correlation.

6. Max Error:

This is the maximum difference between observed and
predicted values.

Max Error = max |y; — ;]
1

It indicates the worst-case scenario in prediction errors;
a lower value is better.
7. Explained Variance:
This measures the proportion of the variance in the
dependent variable that is accounted for by the model.

Var(g
Var(y

~

Explained Variance =

~

Similar to R?, values close to 1 indicate that the model
explains most of the variance, while values close to 0
indicate that it explains little.

8. Spearman Correlation:

This measures the strength and direction of the as-
sociation between two ranked variables. It’s a non-
parametric measure.

Where d; is the difference in ranks for each observation,
and n is the number of observations.

Like Pearson, values range from -1 to 1, and it assesses
monotonic relationships rather than linear ones.

GCN is the only one that had the best performance for
both datasets and for both performance measures. For
this reason, we focus on the GCN in all post hoe statis-
tical analyses.

The GCN model is identified as the best because it has
the highest R?, Pearson correlation, Spearman correla-
tion, and explaind variance, which indicate better pre-
dictive performance, along with relatively low error met-
rics (MAE, MSE, RMSE, and max error) compared to
other models.
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Figure 3: Comparison of evaluation criteria to choose
the best model

3 Conclusion and Future Work

The prediction of drug-target binding affinity is a vital
component of the drug discovery process, and Graph
Neural Networks, particularly the GraphDTA frame-
work, represent a significant advancement in this field.
By leveraging the graph-based representation of molec-
ular structures, GNNs can effectively capture the com-
plex relationships between drugs and their targets, lead-
ing to improved predictive performance. While chal-
lenges remain, the potential of GNNs to revolutionize
drug discovery is evident, paving the way for more ef-
ficient and accurate predictions in the quest for novel
therapeutics.

We presented GraphDTA, a state-of-the-art framework
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that leverages graph neural networks to predict drug-
target binding affinities with enhanced accuracy and ef-
ficiency. By transforming drug compounds and target
proteins into graph representations, GraphDTA effec-
tively captures the complex interactions and structural
nuances that influence binding affinity. Our extensive
experiments on benchmark datasets have validated the
model’s superior performance compared to traditional
methods, highlighting its potential to significantly ad-
vance computational drug discovery.

The interpretability features of GraphDTA also of-
fer valuable insights into the molecular features and in-
teractions that underlie binding affinities, making it a
dual-purpose tool for both prediction and analysis. This
capability can aid researchers not only in identifying
promising drug candidates but also in elucidating the
mechanisms of drug action, which is crucial for optimiz-
ing therapeutic efficacy and minimizing side effects.

Looking to the future, several avenues for further de-
velopment and enhancement of GraphDTA can be ex-
plored. Firstly, we aim to expand our model to in-
tegrate additional biological data, such as genomic in-
formation and epigenetic factors, which could further
enhance predictions and provide a more comprehensive
view of drug-target interactions. Additionally, the in-
corporation of dynamic molecular simulations could al-
low GraphDTA to account for conformational changes
in proteins and ligands over time, potentially leading to
even more accurate affinity predictions.

Furthermore, we plan to investigate the application
of GraphDTA in multi-target scenarios and polyphar-
macology, where drugs interact with multiple targets.
This expansion could facilitate the design of new ther-
apeutic agents that consider complex biological net-
works and disease pathways. Lastly, we intend to make
GraphDTA accessible to the broader scientific commu-
nity through an open-source platform, encouraging col-
laborative efforts to refine and adapt the model for di-
verse applications in drug discovery.

GraphDTA represents a significant step forward in
the predictive modeling of drug-target interactions, and
its ongoing development will contribute to the evolving
landscape of computational pharmacology, ultimately
fostering deeper insights and more effective therapeu-
tic solutions. For future research, it is necessary to use
a larger amount of data that can be effective in them.
In this way, a more comprehensive system can be used
to predict alternative medicine for the treatment of dis-
eases according to a set of factors and data. In addition,
by providing a method for drug recommendation in the
proposed framework, its efficiency can be increased.
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