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Abstract

When modeling phenomena with Ordinary Differen-
tial Equations (ODEs) or Partial Differential Equations
(PDEs), ensuring the accuracy of numerical simulation
results is crucial. The parameters of a model signif-
icantly influence its output and, consequently, its ac-
curacy. One effective approach to improving numeri-
cal solutions’ precision is parameter estimation. There-
fore, a reliable tool for parameter estimation is essen-
tial. We perform parameter estimation on the General-
ized Kuramoto-Sivashinsky (GKS) equation using sta-
tistical methods based on Maximum Likelihood Estima-
tion (MLE) and machine learning techniques that em-
ploy Physics-Informed Neural Networks (PINNs). This
equation is a fourth-order nonlinear PDE and has dif-
ferent parameters. We compare the results obtained
from both approaches, demonstrating that the outcomes
achieved with PINNs significantly surpass the accuracy
of those obtained using MLE.

Keywords: Partial Differential Equations, Ordi-
nary Differential Equation, Generalised Kuramoto-
Sivashinsky equation, Maximum Likelihood Estimation,
and Physics-Informed Neural network

1 Introduction

Many equations used to model physical phenomena do
not have analytical solutions, or when such solutions ex-
ist, they can be computationally expensive to evaluate
[1]. As a result, these equations are often addressed us-
ing numerical methods such as finite differences, finite
elements, finite volumes, and boundary elements. How-
ever, since these methods depend on numerical approx-
imations for derivatives or integrals to compute various
terms in the equations, the solutions derived may devi-
ate from experimental data. In addition to the numeri-
cal solution of the equation, we must also pay attention
to the accuracy of the result.
Models typically contain parameters that are tied to the
underlying mechanisms of the phenomena being studied
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[13]. As the number of parameters increases, so does the
complexity of the model. These parameters can signif-
icantly influence the model’s output. A common strat-
egy for enhancing the accuracy of simulation results is to
adjust the values of parameters to minimize the error—a
process known as parameter estimation. By comparing
the model’s output with experimental data, values of
parameters can be optimized, leading to improved ac-
curacy.
One notable equation widely utilized today is the Gen-
eralized Kuramoto–Sivashinsky (GKS) equation, which
is applied in plasma studies [3]. Analytical solutions to
this equation can be derived for certain specific param-
eter values. In this study, we will conduct parameter
estimation for the GKS equation using both statistical
methods and machine learning techniques, followed by
a comparison of the results obtained from these two ap-
proaches.

1.1 Main Model

One of the most important PDEs in the field of study-
ing phase turbulence and unstable processes [2, 3] is
the Generalised Kuramoto-Sivashinsky equation in the
above form:
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Some applications of this equation are working on un-
stable drift waves in plasma, the flame front instability
[4], and long waves on thin films [5]. In this equation,
α, β, and γ are non-zero parameters.
When α = 1, β = 4, and γ = 1 we have the above
analytical solution:

u(x, t) = 11+15tanh(θ)−15tanh2(θ)−15tanh3(θ), (2)

subject that θ = − 1
2x+t. And also, when α = 2, β = 0,

and γ = 1 we have the above analytical solution:

u(x, t) = − 1

κ
+
60

19
κ(−38γκ2+α)tanh(θ)+120γκ3tanh3(θ),

(3)

subject that κ = 1
2

√
11α
19γ , and θ = κx + t. As we have

the exact values of parameters for Eq. (2) and 3 we can
compare the results of parameter estimation obtained
from PINNs and MLE.
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Figure 1: Image 1a and 1b corresponds to the plot of
Eq. (2) and 3 respectively. The domain of x for both of
equations is (-10,10) and the final time is T = 1s.

1.2 Maximum Likelihood Estimation

Let x1,...,xN be N independent and identically dis-
tributed (i.i.d.) random samples, and let fX(x) be the
probability density function of these random samples.
In this case, the likelihood function is given as follows
[6]:

L(θ) = fX1,X2...,XN
(x1, x2.., xn) =

N∏
i=1

fX(xi) (4)

where θ is unknown parameter. In the parameter esti-
mation process, we begin by computing the likelihood
function based on the provided samples. The objec-
tive is to find the value of θ that maximizes this likeli-
hood function. To simplify the calculations, θ is often
estimated by minimizing the negative logarithm of the
likelihood function [6]. In addition to parameter estima-
tion, Equation 4 can be utilized to identify identifiable
parameters through the use of profile likelihood func-
tions [7].
While this method employs probabilistic techniques, it
also presents several challenges. It is sensitive to the ini-
tial values of the parameters, meaning that even minor
adjustments can lead to significant variations in the re-
sults [8]. Moreover, when using this method, the phys-
ical conditions of the problem may not be adequately
integrated into the likelihood function, resulting in a

notable discrepancy between the model’s output and
experimental data [8]. Additionally, this approach may
yield local optima instead of global ones for the esti-
mated values [8].

1.3 Physics-Informed Neural Network

In recent years, many ODEs and PDEs have been solved
by using Deep Neural Networks (DNN) [9]. In this
method, the physical laws of the model are considered
during the learning process. [10] utilized Artificial Neu-
ral Networks (ANNs) to solve ODEs and some PDEs.
[11] introduced PINNs to solve PDEs and estimate pa-
rameters in the context of forward problems and inverse
problems respectively.
In forward problems by PINNs we suppose the above
PDE as:

ut +Nx[u] = 0, x ∈ Ω, t ∈ (0, T ], (5)

u(0, x) = h(x), x ∈ Ω, (6)

u(x, t) = g(t, x), x ∈ ∂Ω, t ∈ (0, T ], (7)

In this problem Ω ⊂ RD and Nx[u] is a linear or non-
linear operator, parameterized by λ. The functions h
and g denote the initial and boundary conditions re-
spectively. To gain an approximation solution, a Fully
Connected Neural Network (FCNN) is used where the
inputs are (t, x) and the output is uNN (t, x) [14]. As-
sume data points N0 and Nb, which satisfy initial and
boundary conditions, respectively. Nr is the number of
interior points (collocation points). To gain the approx-
imate solution, the loss function of the neural network
is defined as:

L = L0 + Lb + Lr, (8)

such that

L0 =
1

N0

N0∑
i=1

|(u(ti, xi)− h(xi))|2 , (9)

Lb =
1

Nb

Nb∑
i=1

|(u(ti, xi)− g(ti, xi))|2 , (10)

Lr =
1

Nr

Nr∑
i=1

|uti +Nx[ui]|2 . (11)

The terms L0 and Lb represent satisfying uNN (t, x) in
initial and boundary conditions, respectively, while Lr

corresponds to the residual of the PDE. In the process of
learning, Automatic Differentiation is used to perform
the loss function [15].
In parameter estimation we have: ut + Nx[u;λ] = 0.
HereNd is the number of data points within the domain.
For this problem the definition of loss function is as
follows:

L = Ld + Lr, (12)
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where

Ld =
1

Nd

Nd∑
i=1

|(u(ti, xi)− uNN (ti, xi))|2 , (13)

Lr =
1

Nd

Nd∑
i=1

|uti +Nx[ui;λ]|2 . (14)

In this case, the parameters of the problem are learned
by minimizing the loss function.
In Section 2 we will use MLE and PINN methods to es-
timate the parameters of Eq. (1). Section 3 represents
the results obtained by two methods and also compari-
son between them. In section 4 we have the conclusion
of this work.

2 Methodology

For parameter estimation by MLE and PINN, we have
to set initialize parameter values. For Eq. (2) we set
α = 5, β = 3, and γ = 4. Also for Eq. (3) we set α =
5, β = 2.5, and γ = 4. As we have the exact solution
there is no need to calculate the numerical solution of
GKS Eq. Instead of that we produce noisy data in the
above way:

Unoisy(x, t) = Uexact(x, t) + ϵ, ϵ ∼ N (0, σ2). (15)

Next, we compute the derivatives of the two equations
with respect to the inputs xx and tt to derive the struc-
ture of Equation (1). By defining the likelihood function
based on the normal distribution and employing a suit-
able minimization algorithm for the negative logarithm
of the likelihood function, we obtain the estimated pa-
rameter values.
In PINN we use the exact noisy data, and define loss
function as:

L = λLd + Lr, (16)

Ld =
1

Nd

Nd∑
i=1

|(Unoisy(ti, xi)− UNN (ti, xi))|2 , (17)

where

Lr =
1

Nd

Nd∑
i=1
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∂4U

∂x4

∣∣∣∣2 .
(18)

We employed a Fully Connected Neural Network
(FCNN) consisting of 300 data points, three hidden lay-
ers, and 30 neurons in each layer, utilizing the tanh ac-
tivation function. This implementation was carried out
using PyTorch [12]. The neural network learns the pa-
rameters specified in Eq. (18). The hyperparameter λ
in Eq. (16) balances the terms of the loss function.

3 Results

In this section, we have the parameter estimation re-
sults obtained by MLE and PINNs. In Tables 1 and 2
we can see the values obtained by both methods.
The results indicate that the accuracy of the estimates
obtained using PINNs is remarkably high, with the pa-
rameter values converging closely to their true values. In
contrast, the estimates derived from MLE show consid-
erable discrepancies from the actual parameter values.

Table 1: Estimated values of parameters with analytical
solution of Eq. (2)

MLE
Parameters Initialized Exact Estimated

α 5 1 0.3664
β 3 4 -2.001
γ 4 1 0.2213

PINN
Parameters Initialized Exact Estimated

α 5 1 1.0229
β 3 4 3.9868
γ 4 1 1.0105

Table 2: Estimated values of parameters with analytical
solution of Eq. (3)

MLE
Parameters Initialized Exact Estimated

α 5 2 0.6037
β 2.5 0 0.1417
γ 4 1 0.1802

PINN
Parameters Initialized Exact Estimated

α 5 2 1.9998
β 2.5 0 0.03891
γ 4 1 1.0244

As demonstrated in Figures 2 and 3, after 20,000
training steps, the solutions produced by the PINN
closely match the noisy data generated by the analytical
solutions for both Eqs. (2) and (3). Then for each pa-
rameter of (2) and (3) we plotted the estimated values
during learning of the network. The estimated parame-
ter values converge to their true values.
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Figure 2: The PINN solution and estimated parameters
for Eq. (2).
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Figure 3: The PINN solution and estimated parameters
for Eq. (3).
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4 Conclusion

In this study, we began by introducing the Generalized
Kuramoto–Sivashinsky equation and subsequently pre-
sented analytical solutions for specific parameter sets.
We then estimated the parameters of this equation using
two methods: MLE and PINNs, employing noisy data
for our analysis. The results demonstrated that the val-
ues obtained through the PINN method exhibited high
accuracy and converged closely to the exact values after
an adequate number of training steps, whereas the MLE
approach did not yield satisfactory results. The PINN
method effectively incorporates the physical conditions
of the problem during the parameter estimation pro-
cess, especially when minimizing the loss function. This
incorporation leads to significantly improved accuracy
compared to traditional statistical methods. Further-
more, with the enhancements proposed for the PINN
approach, better results can be achieved with fewer it-
erations, thereby increasing the accuracy of parameter
estimation. Additionally, this methodology is applica-
ble to equations that lack analytical solutions, utilizing
numerical results or experimental data for estimation
such as Burgers, Schrödinger, Allen-Cahn, and Navier-
Stokes equations.
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