The First International Conference on
Machine Learning and Knowledge Discovery (MLKD 2024)
Amirkabir University of Technology, December 18-19, 2024 <

Application of Fixed Structure Learning Automata For Designing Intrusion
Detection Systems

Kayvan Asghari*

Abstract

Designing an efficient intrusion detection system in-
cludes several important phases, feature selection be-
ing one of the most important ones. In this paper,
a fixed structure learning automata has been applied
for the feature selection phase. The introduced method
does the exploration and exploitation phases of an op-
timization method perfectly, finding the most impor-
tant features of the network events to detect intrusions.
The count of selected features in the proposed method
is a pre-defined number as the feature selection is a
multi-objective problem, and one of the important ob-
jectives is the feature count. The learning automata-
based method uses reward and penalty operators to ex-
plore the problem’s search space. The proposed method
tries to enhance the accuracy rate for intrusion detec-
tion, which is another significant objective for a fea-
ture selection method. A well-known intrusion detec-
tion dataset called the NSL-KDD has been used in this
paper to evaluate the proposed method. The evaluation
results indicate the acceptable performance of the pro-
posed method compared with some of the existing ones.

Keywords: Fixed structure learning automata, Fea-
ture selection problem, Intrusion detection system.

1 Introduction

Various optimization algorithms have been proposed in
recent years to solve different optimization problems.
These algorithms are not general approaches for all op-
timization problems despite having common character-
istics. Each of these algorithms has weaknesses that
prevent them from reaching optimal solutions. One
of the main problems of these algorithms is the fail-
ure to improve the solutions in different iterations and
the problem of getting stuck in the local optimum. The
general operational pattern of optimization algorithms
is the discovery of solutions in the early iterations of
the algorithm by making diversity for a complete scan
of the problem search space. However, in the last itera-
tions, these algorithms change their strategy and search

*Department of Computer Engineering, Sardroud Cen-
ter, Tabriz Branch, Islamic Azad University, Tabriz, Iran,
k.asghari@iau.ac.ir, k.asghari@yahoo.com

49

around the solutions found in the previous steps to reach
the global optimal solution. The mentioned phases in
the algorithm in various literature are called exploration
and exploitation. The time to change between the ex-
ploration and exploitation phases and how to manage
this issue is significant for an optimization algorithm,
which makes the algorithm work better. Controlling
the balance between exploration and exploitation is per-
formed by some variable parameters of the algorithm,
which are changed during the learning process. These
parameters force the optimization algorithm to explore
the problem’s search space in the first iterations. But, in
the ending iterations and during the exploitation, they
compel the algorithm to perform a local search around
the best-found solutions in the exploration phase. In
ideal conditions, the algorithm should generate diverse
solutions with long moves in the search space at the
beginning and gradually converge to near-optimal solu-
tions in the final iterations. The growing use of network
applications and web services has increased the risk of
intrusion attacks in different networks. Thus, design-
ing accurate and reliable intrusion detection systems
is a significant task to have secure networks. Various
types of intrusion detection systems have been intro-
duced so far. One of the well-known categorizations is
the anomaly-based and signature-based systems, while
the second category is investigated in this paper. Select-
ing the important features that must be checked by the
intrusion detection system is an important phase of its
design. These features are used to build an event classi-
fier that must be minimal, quick, and accurate. Various
feature selection methods have been proposed in the
literature so far [1-7]. The application of fixed struc-
ture learning automata for solving the feature selection
problem of designing an intrusion detection system has
been presented in this paper. The naive Bayesian net-
work has been employed to evaluate the selected fea-
tures of the compared algorithms. The environment is
the evaluation function of selected features using the
naive Bayesian network for the implemented learning
automata-based algorithm. During the iterations of the
learning process, the automata interact with the envi-
ronment and improve their actions by employing the
penalty and reward mechanisms.

2 Related works

A brief explanation of the learning automata tool, in-
cluding its types and the feature selection problem in
developing intrusion detection systems, is presented in
this section.

2.1 The learning automaton

A learning automaton is a conceptual learning tool, that
can be implemented in different ways and used for var-
ious applications. During the learning process, it inter-
acts with a random environment to identify the environ-
ment’s internal specifications. The learning automaton
tries to find out the probabilistic relationship between
its actions and the environment’s feedback. Thus, it se-
lects different actions to find the optimal solution with
the guidance of the environment.

There are different classifications for the learning au-
tomaton. One of them is classifying it into fixed and
variable structures. The probability of changing actions
and transitions between the automaton states is a fixed
value in the fixed structure learning automaton. But, in
the variable structure, the mentioned probabilities are
updated considering the environment feedback [8]. The
object migration learning automaton as a fixed struc-
ture type is used in this paper to solve the feature se-
lection problem in intrusion detection systems [9].

The learning automaton is defined formally by the
quintuple of {¢,«, 3, F(-,-), H(-,-)}, where ¢ is a set
of internal states ¢ = {¢1, @2, ..., 05}, v is a set of au-
tomaton actions a = {aq,aq,...,a,}, and 8 is a set
of environment responses § = {f1,02,...,0m}. The
finite-type state-output automata have been employed
in this paper to select features in intrusion detection
systems because the ¢, a, and [sets are finite.

The state, action, and response of the environment for
the learning automata in the moment of ¢ is represented
by &(t), a(t), and S(t), respectively. The environment
responses set can be finite or infinite, which is 8 = {0, 1}
for the proposed method. ‘0’ means an unfavorable re-
sponse or penalty, while ‘1’ means a favorable response
or reward from the environment.

F(-,-) is a state transfer function, which gets the
current state and environment response and returns
the next state (F(-,-) : ¢ x 8 — ¢). Finally, H(-,")
is a function for determining the current action with
the current environment response and current state
(H(-,) : ¢ x B — «)) [8]. Each learning automaton
in the learning automata has a finite set of states. It
selects and returns an action in each iteration consid-
ering its current state. The interaction of the learning
automaton with the working environment is illustrated
in Figure 1.

The automaton selects a feature as its action («;),
where it is the input of the environment. For every ac-

[Learning Automata

Response Action

Environment]

Figure 1: Interaction between the learning automata
and the environment

tion, the environment returns feedback (5;). The feed-
back from the environment in moment n, which can
be a reward (S(n) = 1) or penalty(8(n) = 0), up-
dates the state of the current action (¢;). For a reward
from the environment, the probability of selected action
(;) increases by the learning automaton. Instead, for
a penalty response, the selected action’s probability is
decreased [8].

Learning automata have various applications in differ-
ent fields like pattern recognition, neural and Bayesian
network optimization [10], network routing [11], job
scheduling [12] query optimization [13], data compres-
sion, and solving NP problems.

3 The fixed structure learning automata for feature
selection

The intrusion detection systems must spend a lot of
energy and time classifying a network packet as an in-
trusion or normal network event. The reason is the es-
tablishment of each packet from tens of features, some
of which are duplicated or useless. Therefore, in recent
decades various feature selection methods have been in-
troduced by researchers for designing efficient and rapid
intrusion detection systems [3].

A fixed structure type of the learning automata tool
is proposed in this section to find a near-optimal solu-
tion for the feature selection problem in designing in-
trusion detection systems. The proposed method uses
the penalty and reward mechanisms to obtain a selected
feature set, which will be employed to build an intrusion
classifier. The selected feature set delegates all features
in the network packet, which is minimal and has no du-
plicate information. The target classifier constructed
by the selected features can inspect the input network
packet to identify the intrusions from normal network
events.

A naive Bayesian network [14] is employed as a simple
and easy-to-implement classifier to evaluate the selected
features of the fixed structure learning automata-based
algorithm and other existing methods. Other kinds of
classifiers like artificial neural networks can also be used
for the solution evaluation, but the concentration of this
paper is over the feature selection phase. To demon-
strate the working procedure of the proposed method,
the flowchart of Figure 2 can be useful.

20

Preprocess the NSL-KDD dataset using the
Weka software.

¥

Construct fixed structure learning automata
with some randomly selected features as
the automata actions.

v

Construct a naive Bayesian network
classifier with the selected features of
learning automata. Train the classifier using
the training part of the NSL-KDD dataset.
Then classify the test part of the dataset and
calculate current accuracy rate.

F Y

Current accuracy
rate > Best
acecuracy rate

] Give reward to learning automata

Give penalty to learning automata and
update selected features.

Yes

lteration < Max
iterations

Return the best-selected features by the
fixed structure learning automata.

Figure 2: The fixed structure learning automata-based
model for the feature selection problem

To apply an intrusion detection dataset, a pre-process
of features to covert named fields to numbers and dis-
cretize the continuous field values is necessary, which is
performed by Weka software. A demonstration of the
fixed structure learning automata for selecting eight fea-
tures is presented in Figure 3. For the selection of n
features, n learning automata are needed, where each
automaton has k states (k=5 in Figure 3). The selected
features are represented in the proposed method by the
actions of the automata or objects. Thus, each learning

51

automaton is responsible for selecting one feature as its
action. During the iterations of the proposed algorithm,
the actions of automata may remain unchanged or be
replaced, which causes the selection of another feature
in the feature set. The action replacement process of
each automaton is repeated to have a non-repetitive and
distinct set of selected features. This method of using
fixed-structure learning automata is also known as ob-
ject migration learning automata [9]. A random feature
is selected and dedicated as the action of each automa-
ton at the beginning of the proposed algorithm, where
the state of that action is a boundary state. The states
that are numbered 5 in Figure 3 in all automata are
boundary states. The penalty and reward mechanisms
change the state of actions of the learning automata
during the learning process. The selected features by
the fixed structure learning automata are employed to
construct a classifier using the naive Bayesian network.
The classifier is trained with the training part of the
intrusion detection dataset. Then, the trained classifier
is used to classify the test part of the dataset. If the
accuracy rate of the classifier is increased compared to
the previous iteration, the learning automata will be re-
warded by the decrease of the state numbers for the cur-
rent actions. Figure 4 illustrates the rewarding mech-
anism for the actions of the learning automata of Fig-
ure 3. If the accuracy rate of the classifier is decreased
in contrast to the previous iteration, the learning au-
tomata will be penalized by the increase of the current
actions’ state numbers.

Figure 5 depicts the penalizing mechanism for the ac-
tions of the learning automata of Figure 3. Features F4
and F27 in Figure 3, which were in the boundary state
of the learning automata, are replaced with F6 and F25
features in Figure 5 by the penalty mechanism. The
fixed structure learning automata-based algorithm in-
cludes the exploration and exploitation phases. Thus,
it is a global search method. In the first iterations of
the proposed algorithm, all the actions of automata or
selected features are in the boundary state and may
change frequently. Thus, the exploration phase is per-
formed in the beginning. After some iterations, the
state numbers of selected features with positive effects
on the quality of the final solution are decreased due
to the received rewards. Then, only the features on
boundary states change repetitively, and the exploita-
tion phase is performed. The proposed method bal-
ances the exploration and exploitation operations to
find the near-optimal solution. The fixed structure
learning automata-based algorithm explores the search
space of the feature selection problem thoroughly to find
promising solutions. The pseudo-code of the introduced
approach for the feature selection problem of intrusion
detection systems is presented in Algorithm 1.

as dy das

dg a7
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5

Figure 3: The fixed structure learning automata for feature selection
a3 as
as

a)
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5

g
Figure 4: The reward for fixed structure learning automata for feature selection
ay

dg az
aj g a7
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5

Figure 5: The penalty for fixed structure learning automata for feature selection

52

Algorithm 1 Pseudo-code of the proposed fixed structure learning automata-based approach

Define SF[i]; (Currently Selected Features array, where 1 < i < Count of Selected Features)

Create FSLA; (i’th Fixed Structure Learning Automaton, where 1 < i < Count of Selected Features);

ARBest =0
Define BestSelectedFeatures[i]; (1 < i <Count Of Selected Features);
Iter = 1;

for i =1 to Count Of Selected Features do

FSLA;.Action = Select a feature from all features set randomly, which has not been selected before;

SF[i] = FSLAi.Action;

end for

while Iter < Maximum Iterations do
CurrentClassifier = Construct an intrusion detection naive Bayesian classifier using SF;
Train CurrentClassifier using the training part of the intrusion detection dataset;

ARcyrrent = Classify the test part of the intrusion detection dataset with CurrentClassifier and calculate the

accuracy rate;
if ARcuyrrent > ARpest then //(Reward)
ARBest = ARCU,’I'T'E’ILt;
BestSelectedFeatures = SF;
for i =1 to Count of Selected Features do
if FSLA;.CurrentState ! =1 then
FSLAi.CurrentState = FSLAi.CurrentState — 1;
end if
end for
else//(Penalty)
for i =1 to Count of Selected Features do
if FSLA;.CurrentState is a boundary state then
FSLA; Action= Select a feature randomly that is not in SF;
SF[i] = FSLA;.Action;
else
FSLA;.CurrentState = FSLA;.CurrentState + 1;
end if
end for
end if
Iter++;
end while
Return BestSelectedFeatures;

Table 1: Content of NSL-KDD dataset

Type Full name Attack types Train records Test records
Normal Normal event - 67343 9711

DOS Denial Of Service Teardrop, Neptune Smurf 45927 7458

Probe Probing attack Satan, Saint, Portsweep 11656 2421

U2R User to Root Rootkit, Loadmodule, Buffer overflow 995 533

R2L Remote to Local Xsnoop, Password, Httptunnel 52 2421

Total count 125973 22544

93

In Algorithm 1, an integer array for currently se-
lected features called SF is created at first. Then, the
learning automata are constructed based on the num-
ber of selected features. The ARp.s; variable repre-
sents the best accuracy rate found so far, and the Iter
defines the current iteration of the algorithm. In the
first for loop of the algorithm, the learning automata
selects the features relative to their actions. For each
iteration of the algorithm in the while loop, a naive
Bayesian network classifier named CurrentClassifier
is constructed using the selected features in the SF' ar-
ray. The CurrentClassifier is trained in the next step
by the training part of the intrusion detection dataset.
Then, it is evaluated by classifying the test part to cal-
culate the accuracy rate. Next, the accuracy rate of
the CurrentClassi fier is analogized with ARp.s¢- The
learning automata are rewarded if the current accuracy
rate exceeds the ARpes. Otherwise, all learning au-
tomata are penalized by decreasing their current state
number. If the automaton’s current state is a bound-
ary state, the related selected feature will be randomly
changed. The BestSelectedFeatures are returned af-
ter the last iteration of the algorithm. The single solu-
tion structure of the proposed fixed structure learning
automata-based method makes it a fast and effective ap-
proach compared to the population-based optimization
algorithms.

4 Results of experiments

The NSL-KDD [15], [16] intrusion detection dataset is
employed to evaluate the proposed fixed structure learn-
ing automata-based algorithm. The Matlab 2024a soft-
ware over a Macintosh OS installed MacBook Pro com-
puter with 8 gigabytes of RAM and Intel core i5 CPU
has been applied to perform the experiments.

4.1 The NSL-KDD intrusion detection dataset

The NSL-KDD is a well-known intrusion detection
datasets, which is an updated version of the KDD99
dataset. Most of the problems in KDD99 dataset like
the duplicate records and defects are updated and fixed
in NSL-KDD [15], [16]. The NSL-KDD dataset includes
41 independent features for network event specifications
and one dependent feature as the target class. The
record types and counts in the NSL-KDD dataset are
indicated in Table 1.

4.2 Evaluation criteria

All the methods in this paper are compared to obtain a
set of selected features, which are used to build a net-
work event classifier. Several measures like the accuracy
rate, setection rate, and false positiverate can be used

Table 2: Confusion table

Estimated type of current event
Intrusion Normal
False Positive True Negative

Real Normal

type (FP) (TN)
of
current Intrusion| True Positive False Negative

event (TP (FN))

to evaluate the classifier, most of them are calculated
using the confusion table of Table 2 [17].

The first measure to evaluate the classifier is the Ac-
curacy Rate (AR) to distinguish normal events from in-
trusions. The accuracy rate must be as high as possible,
which can be computed by formula (1).

TN+TP
AR = 1
R TP+FN+FP+TN()

Intrusion Detection Rate (DR), which can be com-
puted by formula (2), is the second evaluation param-
eter for the intrusion detection systems. The DR indi-
cates the rate of network packets that are suspicious to
be an intrusion and are correctly recognized. The False
Positive Rate (FPR) is the third measure, which can
be computed by formula (3). The FPR indicates the
rate of network packets identified as an intrusion but
is normal. A higher accuracy and detection rate and a
lower false positive rate are desirable for a well-designed
intrusion detection classifier.

TP
bR =pni7p?
FP
FPR = FN+TP(3)

The AR of the created classifier by the selected fea-
tures is employed in this paper as the fitness function
for the proposed and compared algorithms. The naive
Bayesian network has been applied as a simple tech-
nique to build the classifier. Several classification meth-
ods have been proposed in the literature, such as the
Bayesian and neural networks [18], which can be ap-
plied to construct an intrusion detection classifier. The
naive Bayesian network has been employed in this pa-
per to build a classifier with and evaluate the selected
features by the compared algorithms. The proposed
fixed structure learning automata-based algorithm is
compared with the improved crow search [19], parti-
cle swarm optimization [20], secretary bird optimiza-
tion [21], and the genetic algorithm [5] for solving the
feature selection problem. A set of integers represent-
ing the selected feature numbers constitutes the solu-
tion structure of the proposed fixed structure learning

54

Table 3: Obtained accuracy rate for 5, 8, 15, and 20
features

Feature count
Algorithm 5 8 15 20
Fixed struc- | 90.31 91.39 92.57 90.14
ture learning
automata
Crow search | 90.4 91.76 87.92 91.44
algorithm
Secretary bird | 90.79 89.69 92.46 91.32
optimizer
Particle swarm | 86.91 88.81 88.31 91.1
optimization
Genetic algo- | 87.23 87.9 91.12 88.21
rithm

automata-base method and the genetic algorithm [5] im-
plemented for the comparisons. The solution structure
of the other compared algorithms contains 41 real val-
ues. Each value in the solution indicates the importance
of the related feature, where the higher amounts are can-
didates for selection. The implemented algorithms in
this paper evolute the solutions during the iterations by
exploring the feature selection problem’s search space.
The features related to higher numbers in the solutions
are used to build an intrusion detection classifier, which
is employed to train with the training part of the intru-
sion detection dataset.

The next phase is classifying the test part of the intru-
sion detection dataset using the trained classifier. The
number of selected features is also important, where on
one side, the processing load of the intrusion detection
system increases with more features. On the other side,
the accuracy rate of the system may decrease with dupli-
cated or unimportant features. Considering these issues,
the feature selection problem needs a multi-objective al-
gorithm, and one of the objectives must be the feature
count. In this paper, for the simplicity of the performed
experiments, the count of selected features is predeter-
mined to be 5, 8, 15, and 20 features. As the results
of the first experiment, the comparison of the accuracy
rate for the investigated algorithms for the NSL-KDD
intrusion detection dataset is presented in Table 3 and
Figure 6.

Figure 6 and Table 3 demonstrate that the fixed struc-
ture learning automata-based method delivers a higher
accuracy rate for 15 selected features in contrast with
the existing algorithms. However, the accuracy rate of
the proposed algorithm is lower than other algorithms
for 5, 8, and 20 numbers of features. Nevertheless,
the highest accuracy rate value is obtained from the
fixed structure learning automata. Table 4 and Figure
7 demonstrate detection rates for different algorithms.

Table 4 and Figure 7 indicate that the fixed structure

95

—@-Fixed structure learning automata —=—Crow search algorithm
Secretary bird optimizer Particle swarm optimization

=%—Genetic algorithm
93

2 // \/

ACCURACY RATE
8 8 2 8 8 8 =

®
B
w

8 15 20

FEATURE COUNT

Figure 6: Compairing accuracy rates for 5, 8, 15, and
20 features

Table 4: Obtained detection rate for 5, 8, 15, and 20
features

Feature count
Algorithm 5 8 15 20
Fixed struc- | 93.21 94.68 96.9 94.27
ture learning
automata
Crow search | 92.65 94.81 94.24 93.51
algorithm
Secretary bird | 93.23 94.79 96.31 95.25
optimizer
Particle swarm | 91.13 92.34 89.31 90.24
optimization
Genetic algo- | 89.9 91.78 89.13 89.24
rithm

learning automata-based method does better again for
the detection rate with 15 features. For 5 features, the
secretary bird optimizer algorithm results in the highest
detection rate, whereas for 8 features the crow search al-
gorithm obtains the highest value. For 20 features, as
Table 4 and Figure 7 show, the secretary bird optimizer
has the highest detection rate. The overall detection
rate value of fixed structure learning automata-based
algorithm is higher than other compared methods. Ta-
ble 5 and Figure 8 depict the false positive rate value
of investigated algorithms for the NSL-KDD intrusion
detection dataset.

As mentioned in the previous sections, an efficient fea-
ture selection algorithm must result in a classifier with
a low false positive rate in intrusion detection systems.
Table 5 and Figure 8 show the desirable performance
of the proposed algorithm for the false positive rate.
The lowest value for 5 selected features is obtained by
the secretary bird optimizer. The Crow search algo-
rithm has the lowest false positive rate for 8 and 20
features, whereas the fixed structure learning automata-

—a— Fixed structure leaming automata ——e—Crow search algorithm
Secretary bird optimizer Particle swarm optimization
—¥—Genetic algorithm

98

88

DETECTION RATE

86

84
4 5 15 20
FEATURE COUNT

Figure 7: Compairing detection rates for 5, 8, 15, and
20 features

Table 5: Obtained false positive rate for 5, 8, 15, and
20 features

Feature count
Algorithm 5 8 15 20
Fixed struc- | 20.04 16.62 11.37 15.24
ture learning
automata
Crow search | 20.89 13.53 12.83 13.63
algorithm
Secretary bird | 19.84 15.38 12.51 14.82
optimizer
Particle swarm | 20.51 15.29 14.09 14.78
optimization
Genetic algo- | 23.91 17.54 13.78 15.79
rithm

based algorithm obtains the lowest value for 15 features.
The lowest value of Table 5 belongs to the proposed
method, too. The obtained results of the compared al-
gorithms in all experiments indicate that 15 is a rea-
sonable number for the count of selected features. Also,
the proposed fixed structure learning automata-based
algorithm offers an acceptable performance in the ex-
periments, where its results are competitive with the
other compared methods.

5 Conclusion

A fixed structure-based learning automata has been in-
troduced in this paper to tackle the feature selection
problem in intrusion detection systems. The evaluations
showed that the proposed method produces competitive
results compared to the other methods. The reason for
the new method’s high performance is establishing a

—=—Fixed structure learning automata —e—Crow search algorithm
Secretary bird optimizer
—‘—3630nclic algorithm

Particle swarm optimization

N
«

FALSE POSITIVE RATE
o

5 8 15 20
FEATURE COUNT

Figure 8: Compairing false positive rates for 5, 8, 15,
and 20 features

proper balance between the exploration and exploration
of the problem’s search space. The exploitation is done
with a reward for a good action or feature and a penalty
for the actions that only change the related state. The
exploration is performed when the penalties of an ac-
tion of an automaton change the state of the action to
a boundary state and the selected feature of that action
changes. In this way, the set of features changes during
the learning process, and the near-optimal selected set is
achieved. Proposing a hybrid method of fixed structure
learning automata and a discrete optimization approach
can be considered as future work.

References

[1] A.S. Eesa, Z. Orman, and A. M. A. Brifcani, “A novel
feature-selection approach based on the cuttlefish op-
timization algorithm for intrusion detection systems,”
Expert Syst Appl, vol. 42, no. 5, pp. 2670-2679, Apr.
2015, doi: 10.1016/j.eswa.2014.11.0009.

[2] B.Selvakumar and K. Muneeswaran, “Firefly algorithm
based feature selection for network intrusion detection,”
Comput Secur, vol. 81, pp. 148-155, Mar. 2019, doi:
10.1016/j.cose.2018.11.005.

[3] T. Khorram and N. A. Baykan, “Feature selection in
network intrusion detection using metaheuristic algo-
rithms,” International Journal Of Advance Research,
Ideas and Innovations in Technolog, vol. 4, no. 4, pp.
704-710, 2018.

[4] M. H. Aghdam and P. Kabiri, “Feature Selection for
Intrusion Detection System Using Ant Colony Opti-
mization,” 2016. Accessed: Jun. 06, 2022. [Online].
Available: http://ijns.jalaxy.com.tw/contents/ijns-
v18-n3/ijns-2016-v18-n3-p420-432.pdf

[6] Z. Halim et al., “An effective genetic algorithm-based
feature selection method for intrusion detection sys-

o6

[10]

(1]

[12]

(13]

(14]

[15]

[16]

tems,” Comput Secur, vol. 110, p. 102448, Nov. 2021,
doi: 10.1016/j.cose.2021.102448.

H. Alazzam, A. Sharieh, and K. E. Sabri, “A fea-
ture selection algorithm for intrusion detection sys-
tem based on Pigeon Inspired Optimizer,” Expert
Syst Appl, vol. 148, p. 113249, Jun. 2020, doi:
10.1016/j.eswa.2020.113249.

T. S. Naseri and F. S. Gharehchopogh, “A Feature Se-
lection Based on the Farmland Fertility Algorithm for
Improved Intrusion Detection Systems,” Journal of Net-
work and Systems Management, vol. 30, no. 3, pp. 1-27,
Jul. 2022, doi: 10.1007/s10922-022-09653-9.

“Learning Automata: An Introduction - Kumpati
S. Narendra, Mandayam A.L. Thathachar -
Google Books.” Accessed: Jul. 24, 2024. [On-
line]. Available: https://books.google.de/books
/about/LearningAutomata.html?id=ZwbCAgAAQBAJ
redir-esc=y

B. J. Oommen, R. O. Omslandseter, and L. Jiao, “The
object migration automata: its field, scope, applica-
tions, and future research challenges,” Pattern Analy-
sis and Applications, vol. 26, no. 3, pp. 917-928, Aug.
2023, doi: 10.1007/510044-023-01163-X.

K. Asghari, M. Masdari, F. Soleimanian Gharehcho-
pogh, and R. Saneifard, “A fixed structure learning
automata-based optimization algorithm for structure
learning of Bayesian networks,” Expert Syst, vol. 38,
no. 7, Nov. 2021, doi: 10.1111/exsy.12734.

G. I. Papadimitriou, M. S. Obaidat, and A. S. Pomport-
sis, “On the use of learning automata in the control of
broadcast networks: A methodology,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cy-
bernetics, vol. 32, no. 6, pp. 781-790, Dec. 2002, doi:
10.1109/TSMCB.2002.1049612.

S. Sabamoniri, K. Asghari, and M. Javad Hosseini,
“Solving Single Machine Total Weighted Tardiness
Problem using Variable Structure Learning Automata,”
Int J Comput Appl, vol. 56, no. 1, pp. 37-42, Oct. 2012,
doi: 10.5120/8858-2816.

K. Asghari, A. S. Mamaghani, and M. R. Meybodi,
“An evolutionary algorithm for query optimization
in database,” in Innovative Techniques in Instruction
Technology, E-Learning, E-Assessment, and Education,
Kluwer Academic Publishers, 2008, pp. 249-254. doi:
10.1007/978-1-4020-8739-4-44.

S. Mukherjee and N. Sharma, “Intrusion Detection us-
ing Naive Bayes Classifier with Feature Reduction,”
Procedia Technology, vol. 4, pp. 119-128, Jan. 2012,
doi: 10.1016/j.protcy.2012.05.017.

“NSL-KDD Datasets — Research
dian Institute for Cybersecurity —
cessed: Aug. 02, 2023. [Online].
https://www.unb.ca/cic/datasets/nsl.html

“NSL-KDD — IEEE DataPort.”
17, 2024. [Online]. Available:
dataport.org/documents/nsl-kdd-Ofiles

— Cana-
UNB.” Ac-
Available:

Accessed: Oct.
https://ieee-

o7

(17]

(18]

(19]

20]

(21]

H. J. Liao, C. H. Richard Lin, Y. C. Lin, and K.
Y. Tung, “Intrusion detection system: A compre-
hensive review,” Jan. 01, 2013, Academic Press. doi:
10.1016/j.jnca.2012.09.004.

A. Shenfield, D. Day, and A. Ayesh, “Intelligent intru-
sion detection systems using artificial neural networks,”
ICT Express, vol. 4, no. 2, pp. 95-99, Jun. 2018, doi:
10.1016/j.icte.2018.04.003.

D. Jayalatchumy, R. Ramalingam, A. Balakrishnan,
M. Safran, and S. Alfarhood, “Improved Crow Search-
based Feature Selection and Ensemble Learning for
IoT Intrusion Detection,” IEEE Access, 2024, doi:
10.1109/ACCESS.2024.3372859.

A. J. Malik, W. Shahzad, and F. A. Khan, “Network
intrusion detection using hybrid binary PSO and ran-
dom forests algorithm,” Security and Communication
Networks, vol. 8, no. 16, pp. 2646-2660, Nov. 2015, doi:
10.1002/sec.508.

Y. Fu, D. Liu, J. Chen, and L. He, “Secretary bird
optimization algorithm: a new metaheuristic for solving
global optimization problems,” Artif Intell Rev, vol. 57,
no. 5, pp. 1-102, May 2024, doi: 10.1007/S10462-024-
10729-Y /FIGURES/4.

o8

	Session 1A
	Application of Fixed Structure Learning Automata for Designing Intrusion Detection Systems (Kayvan Asghari)

