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Abstract: 

In this study, we investigate the impact of feature 

selection and the number of features on the performance 

of learning models for heart disease diagnosis, focusing 

on two neural network architectures: the Multilayer 

Perceptron (MLP) and Radial Basis Function (RBF). The 

research aims to assess the performance of these models 

using feature sets of 5, 10, and 13 features, selected based 

on their correlation with the target variable. Our results 

show that the MLP model consistently outperforms the 

RBF model, achieving the highest accuracy of 98.3% 

when utilizing 13 features. However, we found that 

simply increasing the number of features does not always 

guarantee improved performance, as irrelevant features 

can introduce noise and hinder model optimization. This 

was particularly evident in the RBF network, where the 

model trained on 10 features outperformed the one using 

all 13. 

The use of advanced feature selection techniques, such as 

correlation-based selection, contributed to enhancing the 

model's accuracy and reducing overfitting. This study 

highlights the importance of balancing feature quantity 

with feature relevance and optimizing model architecture 

for improved heart disease diagnosis. The findings 

suggest that while MLP demonstrates better performance 

across different feature sets, careful feature selection and 

complexity management are key to achieving optimal 

results in medical data analysis. 

Keywords: Heart Disease Diagnosis, Multilayer Perceptron 

Neural Network (MLP), Radial Basis Function Neural Network 

(RBF). 

1 Introduction 

Heart disease is one of the leading causes of death 

worldwide, making accurate and early diagnosis a critical 

priority in healthcare  [1].  Electrocardiogram (ECG) data, 

which records the electrical activity of the heart, has been 

widely used to diagnose heart disease [2]. However, 
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manually analyzing ECG data can be challenging due to 

the complexity and variability of heart signals. This has 

led to an increasing interest in leveraging machine 

learning techniques, particularly neural networks, to 

automate and enhance the diagnosis process. 

In recent years, neural networks have demonstrated great 

potential in medical diagnostics [3], offering the ability 

to model complex and nonlinear relationships in data. 

Among the various types of neural networks, Multilayer 

Perceptron (MLP) and Radial Basis Function (RBF) 

networks have gained significant attention for their 

efficacy in classification tasks [4]. Both models belong to 

the family of feedforward neural networks [5], where 

data flows from the input layer to the output layer without 

loops, ensuring efficient learning and prediction 

processes. 

The MLP, a fully connected network with multiple 

hidden layers, is known for its capability to learn intricate 

patterns in large datasets. It uses activation functions 

such as ReLU and sigmoid to capture nonlinear 

relationships, making it highly suitable for complex tasks 

like heart disease diagnosis [6]. On the other hand, the 

RBF network uses radial basis functions as its activation 

functions and typically has only one hidden layer. The 

RBF network focuses on the distance between input data 

points and predefined centers, which allows it to process 

data quickly, though it may be less effective in handling 

highly complex patterns compared to MLP [7]. 

While both MLP and RBF networks have proven to be 

effective for classification tasks, one of the key factors 

that influences their performance is the selection and 

number of features used in the training process [8]. 

Feature selection is critical in medical diagnostics, as 

using irrelevant or redundant features can reduce the 

model's accuracy and increase the risk of overfitting [9]. 

Therefore, this study aims to investigate the impact of 

different feature sets (5, 10, and 13 features) on the 
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performance of MLP and RBF neural networks for heart 

disease diagnosis. 

The main objectives of this research are as follows: 

• To compare the performance of MLP and RBF 

neural networks in heart disease diagnosis using 

various feature sets. 

• To analyze how the number and selection of features 

affect model accuracy and efficiency. 

• To explore the advantages and limitations of MLP 

and RBF networks in handling medical data. 

By addressing these objectives, this study seeks to 

provide a comprehensive understanding of how feature 

selection and neural network architecture influence the 

accuracy and effectiveness of heart disease diagnosis 

systems. In Figure 1, the overall the overall process and 

performance of the heart disease diagnosis system based 

on feature selection and neural network architecture is 

illustrated. 

 

 
Figure 1: The general algorithm of the research methodology 

 

A.   Related work 

In recent years, the use of machine learning and deep 

learning algorithms for heart disease diagnosis has 

gained significant attention from researchers. Algorithms 

such as the Multilayer Perceptron (MLP) and Radial 

Basis Function (RBF) Networks have been widely 

adopted due to their ability to detect complex patterns in 

medical data. However, studies have shown that MLP 

performs less effectively on certain datasets compared to 

other models like Random Forest, underscoring the 

importance of hybrid algorithms for handling complex 

data. One limitation of this study is the lack of 

comprehensive hyperparameter tuning, an issue that has 

been addressed in other research through more thorough 

optimization [10]. Another study compared the 

performance of MLP and improved MLP in heart disease 

diagnosis, showing that the improved MLP performed 

better in terms of accuracy and execution time. However, 

this research was limited to comparisons with other 

algorithms [11]. 

In another study, the proposed system achieved an 

accuracy of 92.9% for MLP and 93.7% for RBF. 

Although the difference in accuracy and sensitivity 

between the two models was small, the study did not fully 

optimize the hyperparameters [12]. Multilayer 

Feedforward Neural Networks (MLPNNs) demonstrated 

higher accuracy compared to statistical methods such as 

Logistic Regression (LR) and Quadratic Discriminant 

Analysis (QDA), but performed worse than Recurrent 

Neural Networks (RNNs) in modeling time-series data 

[13]. 

Another study examined feature selection for optimizing 

machine learning algorithms. Results showed that filter 

methods improved accuracy in some models like j48, 

while reducing performance in models like MLP and 

Random Forest (RF) [14]. In the study by Mehrabi et al., 

precise feature selection significantly improved the 

performance of MLP and RBF in distinguishing between 

COPD and CHF. MLP achieved a sensitivity of 83.9% 

and specificity of 86%, while RBF showed a sensitivity 

of 81.8% and specificity of 88.4% [15]. 

Another study introduced a modified version of MLP 

with additional inputs similar to RBFN networks. This 

research found that CBP and ECBP networks 

outperformed MLP and RBFN, and the modifications 

made to MLP significantly improved classification and 

approximation tasks [16]. In another study, a system was 

designed for real-time heart disease prediction using 

MLP, trained with two datasets: UCI heart disease and 

cardiovascular heart disease data. It achieved an accuracy 

of 85.71% and 87.30%, respectively, showing a 12-13% 

improvement over previous studies [17]. 

Moreover, a comparison between MLP and RBF 

algorithms revealed that MLPs perform better with larger 

datasets, while RBFs are more effective with smaller 

datasets. These results highlight the importance of dataset 

size in optimizing neural network algorithms [18]. 

Another study showed that the MLP model, with an 

accuracy of 82%, could serve as a non-invasive 

alternative for CAD diagnosis, improving patient 

outcomes and reducing unnecessary interventions [19]. 

2 Materials & Methods 

A. Dataset 
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In this study, we utilized heart disease data from GitHub 

[20], which consists of 303 samples. Each sample 

contains 13 distinct features, listed in Table 1, which 

outlines these attributes along with their descriptions and 

value ranges. The features cover a range of demographic, 

clinical, and medical test results that are typically 

associated with cardiovascular conditions. These features 

are crucial for analyzing the likelihood of heart disease 

development in individuals. 

 

Attribute Description Value Description 

age Patient's age 
Numeric values: Patient's age 

in years 

sex 
Gender of the 

patient 
0: Female, 1: Male 

cp Chest pain type 

0: No chest pain, 1: Typical 

angina, 2: Atypical angina, 3: 

Asymptomatic 

trestbps 
Resting blood 

pressure 

Numeric values: Patient's 

blood pressure in mm Hg 

chol 
Serum cholesterol 

level 

Numeric values: Patient's 

cholesterol level in mg/dL 

fbs Fasting blood sugar 

0: Normal blood sugar (less 

than 120 mg/dL), 1: High 

blood sugar (above 120 

mg/dL) 

restecg 

Resting 

electrocardiographic 

results 

0: Normal, 1: ST-T wave 

abnormality, 2: Left 

ventricular hypertrophy 

thalachh 
Maximum heart rate 

achieved 

Numeric values: Maximum 

heart rate of the patient in 

beats per minute 

exng 
Exercise induced 

angina 
0: No pain, 1: Pain 

oldpeak 

ST depression 

induced by exercise 

relative to rest 

Numeric values: Amount of 

ST depression in millivolts 

slp 
Slope of the peak 

exercise ST segment 

0: Downsloping, 1: Flat, 2: 

Upsloping 

caa 

Number of major 

vessels colored by 

fluoroscopy 

0 to 4: Indicates the number 

of major vessels affected. 0: 

No vessels are affected, 1 to 

4: Higher numbers indicate 

more severe disease. 

thal Type of thalassemia 
1: Normal, 2: Fixed defect, 3: 

Reversible defect 

output Target label 
0: No heart disease, 1: Heart 

disease 

Table 1: Data Attributes 

 

 

B.  Data Classification by Feature Count 

In this study, cardiac signal data from various individuals 

was used as input, with each data point consisting of 13 

different features related to heart activity. The primary 

aim of this research was to examine how the number of 

features affects the accuracy of heart disease diagnosis 

using two distinct neural networks, MLP and RBF. These 

networks were evaluated separately under three different 

conditions, and their results were compared. 

 

To assess the impact of the number of features on 

diagnostic accuracy, the data was divided into three 

categories. In the first category, 5 key features were used; 

in the second, 10 features; and in the third category, all 

13 features were employed. Each dataset was then fed 

into a neural network, and the diagnostic accuracy was 

measured for each category. This method allowed us to 

precisely evaluate and compare the influence of each 

feature set on the model’s diagnostic accuracy. 

 

Feature selection for the models was performed using a 

correlation matrix, as shown in Figure 2. 

 
Figure 2: Correlation Matrix of Various Features with the 

Target Variable (Heart Disease Diagnosis) 

 

 This matrix demonstrates the correlation between 

different features and the target variable (heart disease 

diagnosis). Features with the highest positive or negative 

correlation with the target variable were chosen as the 

primary features. 
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The correlation matrix is a statistical tool that shows the 

correlation between two or more variables using 

Pearson's correlation coefficient (𝜌). The formula for 

Pearson’s correlation coefficient is: 

 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

=
∑(𝑋𝑖 − 𝜇𝑋)(𝑌𝑖 − 𝜇𝑌)

√∑(𝑋𝑖 − 𝜇𝑋)2 . √∑(𝑌𝑖 − 𝜇𝑌)2
 

 

• X and Y are two different features. 

• 𝑐𝑜𝑣(𝑋, 𝑌) is the covariance between the two 

features. 

• 𝜎𝑋 𝑎𝑛𝑑 𝜎𝑌 are the standard deviations of 

features X and Y. 

• 𝜇𝑋 𝑎𝑛𝑑 𝜇𝑌  are the means of features X and Y. 

This formula shows that the correlation coefficient is a 

dimensionless measure that quantifies the strength and 

direction of the linear relationship between two variables. 

Using this metric in the correlation matrix helps identify 

and select the features with the most significant impact 

on the target variable (heart disease diagnosis). 

▪ 13-Feature Category: 

In this category, all available features from the dataset 

were used. The goal was to analyze all factors affecting 

heart disease and use the full scope of information for a 

more accurate prediction. 

▪ 10-Feature Category: 

In this category, features that had a strong correlation 

with the target were selected, but the total number was 

limited to 10. These features include cp, thalachh, exng, 

oldpeak, slope, thal, ca, age, sex, and restecg. This 

reduction was made to simplify the model and prevent 

overfitting. 

▪ 5-Feature Category: 

In this category, the five features with the highest 

correlation with the output were selected: cp, thalachh, 

exng, oldpeak, and slope. These features were chosen to 

simplify the model and speed up the training process 

while still maintaining high diagnostic accuracy. 

By selecting these three feature sets, deep learning 

models of varying complexity were evaluated to 

determine the optimal combination of features for more 

accurate and efficient heart disease prediction. 

 

C. Neural Networks 

In this study, two neural networks, MLP (Multilayer 

Perceptron) and RBF (Radial Basis Function), were used. 

These networks were chosen because both belong to the 

family of feedforward neural networks and share many 

architectural similarities. Both consist of input, hidden, 

and output layers, and the flow of information in each is 

feedforward, meaning data moves from the input layer to 

the output layer without any backward loops. 

 

Feedforward neural networks are among the oldest and 

most well-known architectures in artificial neural 

networks. These networks feature one or more hidden 

layers responsible for processing inputs and producing 

the final output. In this architecture, the neurons in each 

layer are fully connected to the neurons in the next layer, 

meaning that each neuron in one layer is connected to all 

neurons in the subsequent layer. 

The general calculation formula in a feedforward neural 

network is as follows [21]: 

 

ℎ1 = ɸ(𝑊1
𝑇𝑥) 

 

ℎ𝑝+1 = ɸ(𝑊𝑝+1
𝑇 ℎ𝑝)   

 

o = ɸ(𝑊𝑘
𝑇ℎ𝑘)       

Where: 

• W is the weight matrix. 

• x is the input. 

• h represents the hidden layers. 

• ɸ is the activation function. 

 

▪ Radial Basis Function Network (RBF) 

RBF networks are a specific type of feedforward neural 

network, with the main difference from MLP being the 

type of hidden layer and activation function. In RBF 

networks, there is only one hidden layer, and the neurons 

in this layer use radial basis functions to process the 

inputs. The radial basis function is usually defined as: 

ɸ(𝑟) = 𝑒(−𝛽‖𝑥−𝑐‖2) 

Where: 

• ‖x-c‖is the Euclidean distance between the 

input x and the center c. 

• 𝛽 is a parameter that determines the spread of 

the radial function. 

RBF networks are typically used for classification 

problems and, due to their simpler structure and fewer 

hidden layers, have a faster learning process. The hidden 

layer neurons in these networks activate based on the 
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distance of inputs from pre-determined centers, making 

the tuning and training faster. 

 

▪ Multilayer Perceptron (MLP) 

MLP consists of multiple hidden layers, where each 

neuron in one layer is connected to all neurons in the next 

layer. This network can model complex relationships 

between inputs and outputs using non-linear activation 

functions such as ReLU or sigmoid. 

In the MLP network used in this study, the ReLU 

activation function is used in the hidden layers, which is 

defined as follows: 

𝑓(𝑥) = max (0, 𝑥) 

 

However, in the output layer of this network, the sigmoid 

function is used, defined as: 

 

𝜎𝑥 =
1

1 + 𝑒−𝑥
 

This combination allows the hidden layers to learn 

complex and non-linear patterns, while the output layer 

using the sigmoid function produces output as 

probabilities between 0 and 1 for binary classification. 

The MLP network can learn more complex patterns as 

the number of hidden layers increases. Unlike RBF, 

which has only one hidden layer, MLP can have multiple 

hidden layers, making it more suitable for solving more 

complex problems with diverse data. 

 

The main difference between the two networks, MLP and 

RBF, lies in the type of hidden layer and the activation 

function: 

➢ In RBF, the hidden layer neurons use radial basis 

functions that activate based on the distance between 

inputs and pre-determined centers. 

➢ In MLP, the hidden layer neurons use non-linear 

activation functions such as ReLU, and the output layer 

uses the sigmoid function for binary classification. 

Additionally, RBF networks typically have only one 

hidden layer and a faster learning process, while MLP 

networks, with multiple hidden layers, take longer to 

train but can solve more complex problems and simulate 

non-linear systems. 

3 Results and Discussion 

In this section, we analyze and compare the performance 

of MLP (Multilayer Perceptron) and RBF (Radial Basis 

Function) networks using three different feature sets (5, 

10, and 13 features). The results are evaluated based on 

various performance metrics, including accuracy, 

precision, recall, and F1-score, for both classes "Heart 

Disease Present" (Class 1) and "Heart Disease Absent" 

(Class 0). The comparison is depicted in Figures 3 and 4, 

along with the table 2, summarizing the numerical 

performance values for both networks. 

As seen in Figure 3, both MLP and RBF networks 

perform better as more features are included. The MLP 

model generally outperforms the RBF model, achieving 

the highest accuracy of 98.36% with 13 features, while 

the RBF network achieves 83.61% accuracy with the 

same feature set. The MLP model shows consistent 

performance even with 10 and 5 features, recording 

95.08% and 91.80% accuracy, respectively. In contrast, 

the RBF network experiences a sharp drop in 

performance with fewer features, reaching 78.69% 

accuracy when only 5 features are used. 

 

 

 
Figure 3. Accuracy Diagram of the Model 

 

 

Figure 4, illustrates the loss reduction trends during the 

training process. The MLP network shows the lowest loss 

throughout the training process, particularly with 13 

features, indicating better adaptation to the data. The 

RBF network also reduces its loss as the number of 

features increases, but it generally performs less 

optimally than the MLP. When using 5 features, both 

networks show slower loss reduction, particularly the 

RBF model, where the final loss remains significantly 

higher. 
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Figure 4. Loss Diagram of the Model 

 

Table 2, provides a detailed comparison of precision, 

recall, and F1-score for both networks. These metrics are 

calculated as follows: 

▪ Precision: 

 Measures the ratio of correctly predicted positive 

samples to the total number of predicted positives [22]: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Where TP is the number of true positives and FP is the 

number of false positives. The MLP model with 13 

features achieved a precision of 100% for Class 1, 

indicating no false positives. The RBF model, on the 

other hand, shows a lower precision, especially when 

fewer features are used. 

 

▪ Recall: 

 Measures the ratio of correctly predicted positive 

samples to the total number of actual positives [23]: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Where FN is the number of false negatives. The MLP 

model shows a perfect recall of 100% for both classes 

when 13 features are used, while the RBF network shows 

lower recall values, particularly with 5 features (81%). 

 

▪ F1-Score:  

Provides a balance between precision and recall [23]: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

The MLP model achieved the highest F1-scores for both 

classes using 13 features, highlighting its ability to 

balance precision and recall effectively. The RBF model 

exhibited lower F1-scores, particularly with fewer 

features, indicating less efficient performance. 

 

Table 2 . Comparison of Selected Neural Network Models  

Performance 

 

The results indicate that the MLP model consistently 

outperforms the RBF model across all metrics and feature 

sets. The MLP model shows higher accuracy, precision, 

recall, and F1-scores, particularly with 13 features. The 

RBF network, although faster to train, struggles to match 

the MLP's performance, especially when fewer features 

are used. 

Despite the MLP model requiring more computational 

resources due to its complex structure, it offers superior 

performance in predicting heart disease. Conversely, the 

RBF model, though simpler and faster, may still be useful 

in situations where speed and simplicity are more critical 

than accuracy, particularly when limited features are 

available. 

 

4 Conclusions 

In this study, the performance of two neural network 

models, MLP and RBF, was investigated using different . 

 
 RBF MLP 

5
  

fe
a

tu
r
e
s 

  

1
0

 f
e
a

tu
r
e
s 

  

1
3

 f
e
a

tu
r
e
s 

  
 

 

 MLP RBF 

Metric 13 
Features 

10 
Features 

5 
Features 

13 
Features 

10 
Features 

5 
Features 

Accuracy 98.36% 95.08% 91.80% 83.61% 85.25% 78.69% 

Precision 
(Class 0) 

96.67% 96.43% 92.86% 85% 91% 78% 

Precision 
(Class 1) 

100% 93.94% 90.91% 83% 82% 79% 

Recall 
(Class 0) 

100% 93.10% 89.66% 79% 75% 75% 

Recall 
(Class 1) 

96.88% 96.88% 93.75% 88% 94% 81% 

F1-Score 
(Class 0) 

98.31% 94.74% 91.23% 81% 82% 76% 

F1-Score 
(Class 1) 

98.41% 95.39% 92.31% 85% 87% 81% 
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feature sets (5, 10, and 13 features) for heart disease 

detection. The results demonstrated that while an 

increase in the number of features generally improved 

model accuracy, the relevance and impact of the features 

played a crucial role in overall model performance. 

One key finding from the results was that simply 

increasing the number of features does not always 

guarantee better performance, especially when irrelevant 

or less impactful features are included. This was 

particularly evident in the case of the RBF model. While 

the RBF network performed better with 10 features 

compared to 13, suggesting that not all features 

contributed positively to the model’s learning process. 

The addition of less relevant features likely introduced 

noise, reducing the model’s efficiency and making it 

harder to optimize. 

On the other hand, the MLP model consistently 

outperformed the RBF model across all feature sets. The 

MLP model, with its multi-layer architecture and ability 

to model complex relationships between features, 

demonstrated superior learning capabilities. With 13 

features, it achieved the highest accuracy of 98.36%, 

confirming that MLP can better leverage a larger set of 

features when relevant data is provided. This highlights 

the importance of selecting an appropriate model 

architecture for complex, nonlinear tasks like heart 

disease diagnosis. 

The innovation in this research lies in the detailed 

comparison between the MLP and RBF models across 

different feature sets, providing insights into how feature 

selection impacts model performance. Additionally, this 

study emphasizes that focusing solely on the number of 

features is not enough; careful attention must be given to 

the relevance and impact of these features. By using a 

combination of correlation-based feature selection and 

neural network models, this research contributes to a 

deeper understanding of how feature importance 

influences machine learning outcomes in medical 

diagnosis. 

In summary, while increasing the number of features can 

improve model accuracy, the key to success lies in 

selecting the most impactful and relevant features. The 

MLP model showed robust performance across all 

datasets, making it a better choice for heart disease 

prediction compared to RBF, which was more sensitive 

to the quality and number of features. This research 

provides a valuable framework for future studies aiming 

to optimize feature selection and model architecture for 

better predictive outcomes in medical data analysis. 
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