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A Novel Multi-Task Learning Architecture for COVID-19 Detection and
Lung Infection Segmentation in CT Scans
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Abstract

In response to the critical need for accurate detection of
COVID-19 and segmentation of lung infections in CT
scans, this study introduces a novel Multi-Task Learn-
ing framework. The proposed model, built upon the
U-Net architecture, features a shared encoder, a dedi-
cated segmentation decoder, and a multi-layer percep-
tron for classification. Preprocessing involves image en-
hancement techniques such as median filtering and mor-
phological opening, combined in pairs to boost task per-
formance. Additionally, the integration of the Convo-
lutional Block Attention Module (CBAM) aids in ex-
tracting critical features. The model achieved a clas-
sification accuracy of 96.22% and a segmentation accu-
racy of 95.84% when evaluated on a benchmark dataset.
The approach was also successfully applied to U-Net++
and ResUnet architectures, underscoring the potential
for improving multi-task learning structures. This work
sets a new benchmark for COVID-19 detection and ad-
vances medical image analysis.

Keywords: Deep Multi-task learning model, Chest CT
scans, Shared representations

1 Introduction

The global spread of COVID-19 has created an urgent
demand for effective diagnostic tools [1]. While PCR
testing remains a standard, it has limitations in speed
and accuracy, highlighting the critical role of medical
imaging, especially CT scans, for COVID-19 detection.
Challenges like image noise and artifacts can impact the
reliability of these scans. To address these challenges,
deep learning models, especially those using artificial
intelligence, have shown great promise in improving the
analysis of medical images.

In medical image processing, segmentation [2] and
classification [3] play complementary roles. Classifica-
tion helps in diagnosing the overall health status of the
lungs, while segmentation pinpoints the specific areas of
infection. In cases where patient conditions are critical,
segmentation becomes essential for accurate localization
of infections, aiding medical professionals in their diag-
nosis.
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Multi-Task Learning (MTL) frameworks have
emerged as powerful tools in handling both segmenta-
tion and classification tasks. By sharing representations
and improving feature extraction, these architectures
enable models to perform multiple tasks simultaneously,
which leads to enhanced diagnostic precision. However,
previous works in this field have often overlooked the
potential of integrating preprocessing techniques and
attention mechanisms into these models [4].

In this study, a novel multi-task deep learning model
is presented for COVID-19 diagnosis using chest CT
scans. The model incorporates image preprocessing, at-
tention mechanisms like the Convolutional Block At-
tention Module (CBAM) [5], and carefully balances the
performance of segmentation and classification tasks.
Our proposed model achieves high classification accu-
racy while providing precise segmentation results, offer-
ing a reliable solution for diagnosing COVID-19 infec-
tions in medical imaging.

Key contributions of this work include:

1. Unified Multi-Task Learning: The integration of
classification and segmentation tasks in a single
framework enhances model generalization and sta-
bility.

2. Image Processing: The application of preprocess-
ing techniques improves image quality, helping the
model achieve higher accuracy.

3. Attention Mechanisms: CBAM enhances feature
extraction, allowing for more focused and accurate
analysis.

4. Versatility: We propose the foundational architec-
ture based on U-Net but have also tested these com-
ponents within U-Net++ [6] and ResUNet [7] in
multi-task mode to demonstrate their effectiveness.

By building upon U-Net and enhancing it with multi-
task learning, attention modules, and image preprocess-
ing, this study introduces a more robust and comprehen-
sive approach to medical image analysis for COVID-19
detection.

2 Related Works

In this section, we provide a detailed overview of the cur-
rent literature on multi-task learning frameworks, with



a particular focus on their applications in the medical
field. These models have played a crucial role in advanc-
ing medical image analysis. Table 1 summarizes vari-
ous studies on multi-task architectures, outlining their
approaches and key outcomes. From the comparison
of these studies, it is evident that most have primarily
emphasized task operations, often overlooking the inte-
gration of image processing techniques. Recent research
[15, 16, 17] highlights similar limitations, underscoring
the need for further exploration in this area to improve
the performance and efficiency of multi-task learning
models.

Table 1: Summary of related works in multi-task learn-
ing.

Research article Year Tasks and Results

Kordnoori et al. [9] 2023 | Classification,  Seg-

mentation

Acc: 0.97 (DS1), 0.96
(DS2)

Dice: 88.8640.05
(DS1),  87.974+0.02
(DS2)

El-Bana et al. [10] 2020 | Classification,  Seg-

mentation
Acc: 99.4%

AUC: 4.5% improve-
ment

Malhotra et al. [11] 2022 | Classification, Seman-

tic Segmentation
Sens: 96.80%
Spec: 90%

Ortiz et al. [12] 2022 | Infection Segmenta-
tion, Classification

(with metadata)
AUC: 0.80

Li et al. [13] 2022 | Classification,  Seg-

mentation
Acc: 94%

Sens: 93.32
Dice: 69.95

Munusamy et al. [14] 2021 | Classification,  Seg-

mentation
Acc: 99%
Dice: 74.5

Polat [15] 2022 | Lung  Segmentation
(three tasks)

Dice: 0.98

3 Proposed Model

In this section, we present the architecture of the model
designed for the precise and efficient analysis of COVID-
19 lung infections. The model consists of two key stages:
pre-processing and a U-Net-based network that incorpo-
rates integrated attention modules. Each of these stages
is critical for enhancing the overall performance and ac-
curacy of the model, thus offering a comprehensive so-
lution for segmentation and classification tasks.

Our proposed framework, depicted in Figure 1, uti-
lizes a simplified U-Net architecture for several com-
pelling reasons. First, U-Net demonstrates superior per-
formance compared to other architectures when faced
with limited data availability. Second, the U-Net family
encompasses a wide range of variations, allowing us to
evaluate our proposed approach across different frame-
works. Finally, it is easier to extend U-Net to a multi-
task structure than to adapt other architectures.

Furthermore, we will extend the proposed framework
to develop multi-task models based on U-Net+-+ and
ResUNet architectures. The results of these experi-
ments will be presented in the Experimental Results
section, where we will compare the outcomes of the dif-
ferent network architectures in multi-task scenarios.
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Figure 1: Illustration of the proposed model architec-
ture.

3.1 Encoder-Decoder Structure

The proposed multi-task model combines classification
and segmentation tasks within a shared encoder frame-
work, using CBAM modules to enhance feature repre-
sentation. The encoder extracts hierarchical features
via convolutional layers, with filter sizes ranging from
64 to 512, and a kernel size of 3x3. The decoder handles
segmentation, while a multi-layer perceptron performs
infection classification. This structure enables efficient
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lung infection detection and identification of affected re-
gions by generating rich feature representations.

Each convolutional layer C™ produces feature maps
by convolving the input with learned weight matrices
Wi(l) and bias terms bz(-l)7 and applying a non-linear ac-
tivation function:

cm = +w® ), i=1,... ., FO (1)
Here, C’i(m) is the resulting feature map, and Wi(l) are
the learned weight matrices.

The next layers compute feature maps through sum-
ming products of weights and feature maps:

pn—1)

o =fo+ Y wim Pty =1, F0
s=1
(2)

3.1.1 Classification Task

The classification task is implemented using a multi-
layer perceptron with two dense layers (512 and 128 neu-
rons) and dropout (0.5) to prevent overfitting. The final
layer has two neurons with softmax activation to pre-
dict class probabilities. The categorical cross-entropy
loss function C'E is defined as:

C
CE = - t;log(f(S)) (3)
i=1
with softmax probabilities given by:
eSi
f (S)z = —C 3. (4)
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3.1.2 Segmentation Task

The segmentation task uses sigmoid activation to en-
able pixel-wise classification for lung infection detection.
The dice coefficient, with smoothing factor €, measures
the similarity between predicted and true masks:

2lz Nyl +e

_ 5
2]+ yl + < ©)

dice_coef =

Segmentation helps improve the model’s precision and
ensures accurate medical image analysis.

3.2 Pre-Processing Phase

Our pre-processing strategies blend technical expertise
with clinical relevance, focusing on optimizing the input
data’s quality. To achieve this, we implement a combi-
nation of median filtering and morphological opening
algorithms.
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This strategic integration serves multiple purposes,
including enhancing overall image quality and facilitat-
ing the accurate detection of lung infections. Specifi-
cally, we employ intensity normalization to establish a
consistent baseline relative to the average intensity of
healthy lung tissue, ensuring that variations in image
intensity are adjusted to a standardized level for more
reliable analysis.

All images were standardized to a fixed size of
224 %224 pixels. The technical advancements achieved
through these pre-processing steps enhance our model’s
capabilities for precise COVID-19 detection and versa-
tile analysis of various medical conditions, making it a
valuable tool for healthcare professionals.

3.3 Dataset

This study integrates four distinct datasets to form a
new dataset categorized into two classes: "healthy” and
”infected.” The datasets included in this research are
the ”MedSeg dataset” [18], ?COVID-19 CT Lung and
Infection Segmentation Dataset” [19], and ”MosMed-
Data: Chest CT Scans with COVID-19” [20]. Fur-
thermore, the ”"COVID-19 Lung CT Scans” dataset
[21], which contains images of healthy lung CT scans,
was merged with datasets [18]-[20] to enrich our final
dataset.

For the distribution of the datasets into training, val-
idation, and testing subsets, we implemented a ratio
of 60%, 20%, and 20%, respectively. To enhance the
dataset and promote diversity in the image slices, vari-
ous data augmentation techniques were applied. These
techniques included rotations of 90° and 270°, as well
as horizontal and vertical translations, zooming, and
shearing. Table 2 provides detailed information on the
number of cases in each class before and after data aug-
mentation.

Table 2: Number of cases in the datasets before and af-
ter data augmentation for each class. (Class 1: infected,
Class 2: healthy)

Dataset Data Type | Class 1 (Infected) | Class 2 (Healthy) | Total
Combination Raw data 470 470 940
of [18] and
21]

Augmented data 3760 3760 7520
Combination Raw data 1351 1351 2702
of [19] and
21)

Augmented data 10808 10808 21616
Combination Raw data 785 785 1570
of [20] and
21]

Augmented data 6280 6280 12560
Final Augmented data 20848 20848 41696




3.4 Evaluation Metrics

The proposed model was rigorously trained, validated,
and tested using COVID-19 datasets. For assessing per-
formance in the segmentation task, several metrics were
utilized, including the Dice coefficient, mean squared
error (MSE), peak signal-to-noise ratio (PSNR), and
structural similarity index measure (SSIM). In the clas-
sification task, key evaluation metrics comprised the
area under the ROC curve (AUC), accuracy, sensitiv-
ity, and specificity.

The mean squared error (MSE) can be expressed
mathematically as follows:

1 m—1n—1
MSE = —— S SO I56. ) — g (6)
MN i=0 j=0
In this equation, f represents the pixel matrix of the
original image, g denotes the pixel matrix of the de-
graded image, m indicates the number of pixel rows, n
signifies the number of pixel columns, and |||| indicates
the Euclidean distance.
The peak signal-to-noise ratio (PSNR) is calculated
using the following formula:

vMSE

Here, Maxy denotes the maximum signal value from
the original image.

The structural similarity index measure (SSIM) incor-
porates evaluations of luminance (), contrast (c), and
structure (s) between the images f and g, weighted by
a, B, and ~ respectively:

M
PSNR = 20log;, (axf> (7)

SSIM(f,9) =U(f,9)* - c(f,9)" - s(f.9)"  (8)

For the classification task, the accuracy is computed
as follows:

True Positives + True Negatives

(9)

A =
cenracy Total Examples

Sensitivity is defined as:

True Positives

(10)

Sensitivity =
Y True Positives + False Negatives

And specificity is determined by:

True Negatives
True Negatives 4 False Positives

(11)

Specificity =

Where:

e True Positives (TP): The number of actual posi-
tive samples correctly identified by the model. This
metric indicates how well the model has recognized
true positive cases (e.g., COVID-19 infections).

e True Negatives (TN): The number of actual
negative samples correctly identified by the model.
This metric reflects how well the model has recog-
nized true negative cases (e.g., healthy lungs).

e False Positives (FP): The number of actual nega-
tive samples incorrectly identified as positive. This
metric shows the model’s errors in identifying pos-
itive cases.

e False Negatives (FN): The number of actual
positive samples incorrectly identified as negative.
This metric highlights the model’s inability to rec-
ognize true positive cases.

4 Experimental Results

In this section, we present the model’s results, organized
by the classification and segmentation tasks. To enable
a more comprehensive comparison, we also provide the
results of a simple multi-task model that uses the image
processing techniques of median filtering and morpho-
logical opening but does not include CBAM modules.
This allows us to better assess the impact of CBAM on
the proposed model. The outputs for the classification
and segmentation tasks are displayed in Tables 3 and 4
, respectively.

Table 3: Segmentation results.

Experiment| Acc | MSE | PSNR | SSIM | Dice + Std

Simple 95.66 | 0.04 36.65 0.94 88.05 + 0.01
Multi-Task

Model

Proposed 95.84 | 0.03 36.70 0.95 88.23 + 0.01

Model

Table 4: Classification results.

Experiment| Acc | Sens | Spec | AUC | Precision | F1 | MCC
Simple 95.62 | 95.61 | 95.63 | 95.85 95.63 95.55 | 91.28
Multi-Task

Model

Proposed 96.22 | 96.22 | 96.22 | 96.66 96.22 96.23 | 92.01
Model

Table 3 highlights the segmentation task results,
while Table 4 presents the outcomes of the classification
task. These tables clearly demonstrate the substantial
improvements achieved in both tasks.

In Table 3, the integration of the CBAM module sig-
nificantly enhances segmentation performance. The im-
provements are reflected in higher segmentation accu-
racy, fewer errors, better image quality, and improved
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structural similarity. The Dice coefficient shows a no-
table increase to 88.23 + 0.01, demonstrating the effec-
tiveness of these enhancements compared to the simple
multi-task model.

Moving to Table 4, the CBAM module’s inclusion
in the proposed model leads to superior classification
performance over the simple multi-task model. This
improvement highlights the critical role of the shared
CBAM module in aligning the attention mechanisms for
both segmentation and classification tasks in the multi-
task framework. The attention harmonization enables
the model to more effectively evaluate features relevant
to both tasks, resulting in more comprehensive and ac-
curate feature representations, and ultimately, better
overall performance.

A paired t-test was conducted to compare the classi-
fication results in Table 4. With a significance level of
0.05, the p-value was much smaller than 0.05, leading
us to reject the null hypothesis (HO). This indicates a
statistically significant difference between the classifica-
tion results of the two experiments. The t-statistic of
—20.42 and the p-value of 8.97 x 10~7 further confirm
the effectiveness of the proposed model’s enhancements
using the CBAM module.

For detailed information on the implementation set-
tings and hyperparameters used in the multi-task
model, refer to Table 5. This table outlines the key
configurations that influence the model’s training and
performance, offering clarity on the hyperparameters
employed throughout the implementation.

Table 5: Hyperparameter configurations and implemen-
tation details of the multi-task model.

Hyperparameter Value(s)
Mini-Batch Size 32
Learning Rate 2e-4
Number of Epochs 100
Convolutional Kernel Size 3x3
Gradient Decay Rate 0.96
Loopy Belief Propagation (for CRF) 0.8

Figure 2 displays the confusion matrix for the pro-
posed model, providing a comprehensive analysis of its
classification performance across all datasets. The ma-
trix is based on a 20% test subset from each dataset, giv-
ing insights into how the model distinguishes between
classes.

Figure 3 shows the output images of the segmen-
tation task. The black regions represent healthy ar-
eas, while the red regions denote infected areas. Each
row corresponds to a test set image, demonstrating the
model’s performance through the pre-processing stage
(using median filtering and morphological opening) and
the application of the CBAM module for better segmen-
tation of infection.
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Figure 2: Confusion matrix for the proposed model in
the classification task, offering a detailed evaluation of
class distinctions.

To improve the interpretability and transparency of
the classification task, we employed the Grad-CAM
technique to produce localization maps for test set im-
ages identified as COVID-19 cases. This method high-
lights the key regions that influenced the model’s pre-
diction. Figure 4 displays examples of CT images along-
side their corresponding Grad-CAM maps. The model
successfully identified these cases as COVID-19, accu-
rately marking abnormal areas within the CT scans and
providing insights into the decision-making process.

5 Comparison and Discussion

In this section, we carry out an in-depth performance
analysis of our proposed model and compare it with pre-
vious research. The main goal is to thoroughly evaluate
the model’s effectiveness, position it against state-of-
the-art studies, and identify areas for potential improve-
ments. The comparison is conducted in the following
stages:

1. We analyze the outputs of our model against results
from prior studies, considering both the segmenta-
tion and classification tasks.

2. To further demonstrate the efficiency of our pro-
posed approach in creating impactful multi-task ar-
chitectures, we integrated the same pre-processing
techniques and CBAM module into more com-
plex networks, such as U-Net++ and ResUNet.
For classification, we introduced a multi-layer per-
ceptron branch, transforming these models into a
multi-task structure.

Table 8 offers a detailed comparison of the segmenta-
tion performance of our multi-task model with state-of-
the-art techniques, while Table 9 highlights its classifica-
tion task results. All comparisons were performed using
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Figure 3: Output images of the segmentation task. The
black regions represent healthy areas, while the red re-
gions indicate infected areas. Each row corresponds to
a test set image, showing the performance of the pro-
posed model during the pre-processing stage and with
the inclusion of the CBAM module for improved seg-
mentation.

the same dataset and metrics for fairness, and we repro-
duced the results of previous studies for consistency. In
Table 8, the proposed model delivers competitive results
compared to other models in segmentation. While all
models considered are multi-task models, our approach
outperforms models from [10], [13], and [14]. Pairwise
t-tests were conducted to compare Dice scores between
our model and others. With a significance level of 0.05,
the p-values were consistently below this threshold, al-
lowing us to reject the null hypothesis (HO) in each case.
Thus, we conclude that the Dice scores of our proposed
model differ significantly from other models in the seg-
mentation task.

This multi-task approach allows the model to capture

generalized features that apply to various scenarios. As
a result, the proposed model excels at identifying both
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Figure 4: Grad-CAM visualizations for selected CT im-
ages. (Column 1: Original images of COVID-19 affected
cases. Column 2: Grad-CAM visualizations showing ar-
eas of abnormalities in the CT scans.)

common and specific characteristics of the target ob-
ject, which leads to higher segmentation accuracy. In
contrast, models trained solely for a single segmentation
task may be constrained by dataset-specific biases and
variations, limiting their adaptability to new data. Our
multi-task strategy, which leverages shared knowledge
and diverse data, enables the model to achieve better
segmentation accuracy and robustness, as demonstrated
by its superior performance compared to models trained
on individual datasets.

Table 9 provides a comparison of the classification
task performance between our model and state-of-the-
art approaches. Once again, the proposed model shows
significant improvements in accuracy and other met-
rics, showcasing its superior generalization capability
and performance consistency across multiple datasets.

In the final step, we advanced the complexity of our
network by integrating U-Net++ and ResUNet archi-
tectures, which are more intricate than the basic U-Net.
We further enhanced these architectures by adding a
multi-layer perceptron branch, transforming them into
multi-task models that included both segmentation and
classification tasks. Pre-processing, attention modules,
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Table 6: A Comparison of Segmentation Task Perfor-
mance between the proposed model and State-of-the-
Art Research.

Table 8: Comparison of the proposed multi-task struc-
ture across different network architectures in the seg-
mentation task.

Reference Acc | MSE | PSNR | SSIM | Dice + Std
8] 95.18 | 0.04 33.06 0.91 85.43 £ 0.03
[10] 95.77 | 0.04 33.54 0.92 | 86.07 £0.02
[13] 95.72 | 0.04 32.54 0.91 | 85.10 £ 0.02
[14] 94.60 | 0.05 33.11 0.92 | 85.54 +0.01
Proposed 95.84 | 0.03 36.70 0.95 88.23 £ 0.01

Table 7: A Comparison of Classification Task Perfor-
mance between the proposed model and State-of-the-
Art Research.

Reference Acc | Sens | Spec | AUC | Precision | F1 | MCC

[7] 94.49 | 94.52 | 95.57 | 94.85 94.50 93.76 | 90.41
9] 95.34 | 95.37 | 96.42 | 95.70 95.35 94.61 | 91.26
[10 95.08 | 95.11 | 96.16 | 95.44 95.09 94.35 | 91.00

1 95.49 | 95.52 | 96.57 | 95.85 95.50 94.76 | 91.41

—

(12 95.03 | 95.06 | 96.11 | 95.39 95.04 94.30 | 90.95
13 93.91 | 93.94 | 94.99 | 94.27 94.20 93.18 | 89.83
[15 96.05 | 96.08 | 97.13 | 96.41 96.06 95.92 | 91.97
Proposed 96.22 | 96.22 | 96.22 | 96.66 96.22 96.23 | 92.01

and post-processing were also applied to refine these
models.

Our objective was to investigate the impact of more
complex encoder-decoder architectures on multi-task
performance. By utilizing U-Net++ and ResUNet with
additional multi-layer perceptron branches, we aimed
to explore the advantages and limitations of these more
sophisticated designs. Tables 8 and 9 present the seg-
mentation and classification results, highlighting the im-
proved performance of the U-Net++, ResUNet, and U-
Net models under the multi-task structure.

The results underscore the strength of multi-task
learning in improving both segmentation accuracy and
classification performance through shared knowledge
across tasks. It is notable that the simple U-Net multi-
task architecture serves as the baseline, without the
enhancements of pre-processing and CBAM modules.
These comparisons emphasize the benefits of the pro-
posed approach in CT image analysis, demonstrating
its versatility and effectiveness in both diagnostic and
analytical tasks.

This study has a few limitations, outlined as follows:

1. Requirement for labeled data with masks:
Our method relies on datasets where both labels
and corresponding masks are available simultane-
ously. This dependency may restrict its applicabil-
ity in scenarios where such datasets are not readily
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Mode Model Acc | MSE | PSNR | SSIM | Dice + Std
Simple U-net 95.24 | 0.04 35.64 0.94 87.33 £ 0.01
Multi-Task
U-net++ 95.58 | 0.04 35.97 0.95 | 87.67 £ 0.01
RESUNET 95.13 | 0.04 35.53 094 | 87.24 £0.01
Proposed U-net 95.84 | 0.03 36.70 0.95 88.23 £ 0.01
Method
U-net++ 96.18 | 0.03 36.93 0.96 | 88.36 £ 0.02
RESUNET 95.74 | 0.03 36.47 0.95 88.07 + 0.01

Table 9: Comparison of the proposed multi-task struc-
ture across different network architectures in the classi-
fication task.

Mode Model Acc | Sens | Spec | AUC | Precision | F1 | MCC
Simple U-net 95.24 | 95.27 | 95.22 | 95.60 95.25 94.70 | 91.16
Multi-Task

U-net++ 95.60 | 95.63 | 95.58 | 95.96 95.61 95.06 | 91.52

RESUNET 95.15 | 95.18 | 95.13 | 95.51 95.22 94.61 | 91.07

Proposed U-net 96.22 | 96.22 | 96.22 | 96.66 96.22 96.23 | 92.01
Method

U-net++ 96.16 | 96.19 | 96.14 | 96.52 96.17 95.43 | 92.08
RESUNET 94.94 | 94.97 | 94.92 | 95.35 94.95 94.21 | 91.33

accessible.

2. Higher performance in related tasks: The ef-
fectiveness of our multi-task architecture is more
pronounced in tasks that are closely related. For
tasks with weaker correlations, the method may
require further refinement and optimization to en-
hance its performance.

6 Conclusion

In light of the global COVID-19 pandemic, the need for
precise diagnostic tools has led to an increased reliance
on artificial intelligence and CAD systems as essential
medical aids. This study proposed a novel Multi-Task
Learning (MTL) architecture designed for two main
tasks: segmentation and classification of chest CT scan
images. The proposed model, based on U-Net, incorpo-
rates a shared encoder for both tasks, with a dedicated
decoder for segmentation and a multi-layer perceptron
branch extending from the final encoder layer to handle
classification.

The distinguishing feature of this MTL model is its
focus on enhancing image quality, improving infection
detection, and overall model performance. Preprocess-
ing techniques were applied to improve the quality of
input images, and a CBAM attention module in the
shared encoder enhanced feature extraction. The pro-
posed method was evaluated using multiple datasets.



For segmentation, the model achieved an accuracy of
95.84%, an MSE of 0.03, a PSNR of 36.70, an SSIM of
0.95, and a Dice coefficient of 88.23. In the classifica-
tion task, the model achieved an accuracy of 96.22%, a
sensitivity of 96.22%, a specificity of 96.22%, an AUC
of 96.66%, an F1 score of 96.23%, and an MCC of
92.01. Comparisons with previous MTL models and
pre-trained single-task models highlighted the compet-
itiveness of the proposed approach. Furthermore, the
benefits of preprocessing, attention, and post-processing
were demonstrated when applied to U-Net++ and Re-
sUnet architectures, showing their potential for improv-
ing multi-task models.

However, this study has certain limitations. The ben-
efits of MTL are only realized when the tasks are closely
related, as is the case in this study. Additionally, the
proposed model requires inputs that contain both labels
and masks, which may limit the selection of datasets.
Future research should focus on addressing these chal-
lenges.

Moving forward, it is essential to refine and advance
MTL architectures for medical image analysis, particu-
larly in the context of COVID-19 applications. Explor-
ing additional tasks, such as anomaly detection or dis-
ease severity assessment, could extend the model’s ca-
pabilities. Additionally, investigating model simplifica-
tion or pruning techniques is crucial to enhance compu-
tational efficiency while maintaining performance, par-
ticularly for architectures like U-Net++ and ResUnet.
Optimizing hyperparameters and tailoring network ar-
chitectures to various medical imaging modalities and
datasets can also contribute to the development of more
robust and adaptable models. The proposed method
holds significant potential as a primary screening tool,
helping primary healthcare providers refer patients to
specialists efficiently, especially in resource-constrained
settings. The adoption of such technology paves the way
for broader global studies aimed at improving diagnostic
rates across healthcare systems.
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