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Abstract

Implied volatility is a crucial indicator in financial mar-
kets, representing the market’s expectations of future
volatility and serving as a cornerstone for option pric-
ing, risk management, and asset allocation. Accurate
tracking and forecasting of implied volatility are essen-
tial for investors and portfolio managers aiming to op-
timize returns and mitigate risks. This paper explores
the effectiveness of different modeling approaches for
tracking the implied volatility of the S&P500 index, fo-
cusing specifically on a comparison of exponential au-
toRegressive conditional heteroskedasticity (EARCH),
long short-term memory (LSTM) neural networks and
Nonlinear autoregressive with exogenous input (NARX)
models, both types of artificial neural networks. Our
empirical study shows that the LSTM model improves
our estimation over NARX model.

Keywords: Implied volatility, LSTM neural network,
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1 Introduction

Estimating the volatility of equity returns with high ac-
curacy is pivotal for effective portfolio selection, risk
management, and the development of trading strategies.
Volatility, characterized by the level of price changes
of an asset over time, is a critical factor in deter-
mining derivative pricing and evaluating market risk.
Among various measures, implied volatility is partic-
ularly important as it reflects market expectations of
future volatility derived from option prices [14].
Unlike historical volatility which focuses only on past
price movements, implied volatility incorporates mar-
ket’s collective expectations and insights regarding fu-
ture conditions. It anticipates the future movement
of the underlying asset’s price and predicts the ex-
tent of potential price fluctuation, aiding in determining
the profitability potential options before expiry. This
forward-looking nature allows implied volatility to ad-
just more rapidly to new information [2]. Thereby, it
helps the practitioners and investors anticipate market
movements and inform trading strategies [3].
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However, accurately calibrating implied volatility,
which significantly affect option pricing remains, a ma-
jor challenge in finance. Precise calibration is essential
for making informed investment decisions and managing
portfolio risk effectively. The reliance of implied volatil-
ity on various maturities and strike prices influences its
accuracy in estimating future realized volatility. Goyal
and Saretto [8] found that differences between historical
and implied volatility are temporary, with one-month
implied volatility effectively serving as a reliable mea-
sure for longer-term historical volatility. This finding
highlights the importance of options implied volatility
as a representation of realized volatility.
Econometric models like the generalized autoregressive
conditional heteroskedasticity (GARCH) model [1] and
its extension, the exponential GARCH (E-GARCH)
model [13], have been widely used to model time-varying
volatility. However, these models often struggle to cap-
ture the nonlinear and complex dynamics inherent in
financial time series, limiting their effectiveness in track-
ing implied volatility [3]. Stochastic volatility models,
such as Heston’s model [10], also seek to account for
aspects like mean reversion and the correlation between
asset returns and volatility. Heston as well as Bates
model yields semi-closed form solutions for European
option prices in terms of Fourier transforms making
them relatively easy calibration to market data.
In recent years, artificial neural networks (ANNs) have
gain popularity due to their capacity to model com-
plex nonlinear relationships and detect detailed pat-
terns within data [9], [16]. The nonlinear autoregres-
sive model with exogenous inputs (NARX) is a type of
an ANN used for time series forecasting. It is indeed
notable for its effectiveness in modeling nonlinear dy-
namic systems, including many financial applications.
For example, Clementi [3] demonstrated that NARX
networks outperform traditional models like EGARCH
and the Heston model for forecasting implied volatility.
The EGARCH model is used to analyze and predict the
volatility of time series data. It allows for asymmetric
responses of volatility to shocks and captures the expo-
nential dynamics of volatility where volatility cluster-
ing is observed. Similarly, Stokes and Abou-Zaid [15]
showed the effectiveness of ANNs in forecasting ex-
change rates. The models capability to handle complex
relationships and time series data makes it particularly
useful in this field, allowing analysts to better predict
and understand financial trends.
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Building on NARX model successes, innovations in neu-
ral network architectures, most notably long short-term
memory (LSTM) networks [11] have emerged. LSTMs
address the vanishing gradient problem, inherent in tra-
ditional recurrent neural networks, enabling the capture
of long-term dependencies in sequential data and mak-
ing them suitable for financial time series forecasting.
DEcclesia and Clementi [5] found that ANN models gen-
erally outperform traditional frameworks like Heston in
effectively tracking implied volatility dynamics, particu-
larly in terms of accuracy related to root mean squared
error (RMSE). Despite these advancements, direct com-
parisons between EGARCH, NARX and LSTM mod-
els concerning the estimation of implied volatility are
scarce in the literature, highlighting a critical research
gap. This paper aims to fill that gap by identifying
the most effective method for measuring equity returns
and accurately tracking options implied volatility. Us-
ing S&P500 option data and equity price data from 2011
to 2018, this study seeks to provide insights valuable for
both practitioners and researchers interested in enhanc-
ing risk management strategies and improving trading
decisions.

2 Volatility estimation

In this section, we explore the estimation of equity re-
turns volatility by evaluating various modeling tech-
niques. The nonlinear autoregressive model with ex-
ogenous inputs (NARX) is assessed against established
financial models, specifically the Heston model and the
exponential generalized autoregressive conditional het-
eroskedasticity (EGARCH) model. Previous research,
notably by Clementi [3], indicates that NARX outper-
forms both the Heston and EGARCH models in fore-
casting implied volatility. This finding highlights the
NARX models strength in capturing the complexities of
financial markets. Volatility is defined as the standard
deviation of stock returns provided by the variable per
unit of time when the return is expressed using contin-
uous compounding. So given, St, the stock price at the
end of day t, the historical variance over a time horizon
[0, T ] is given by:

σ2
t =

1

T − 1

T∑
t=1

(rt − r̄)2 ∼=
1

T − 1

T∑
t=1

r2t (1)

where rt = ln St

St−1
. In general market participant are

used to deal with yearly volatility which is given by
σ̂t =

√
σ2
t · 252.

2.1 Historical rolling volatility

The simplest approach to measure time varying volatil-
ity is given by the Historical Rolling Volatility estimated

on log returns after choosing the right size of the rolling
window. The historical yearly rolling window volatility,
σ̂n,t is given by

σ̂n,t =

√√√√ 1

n

n∑
s=t−n−1

(rs − r̄)2 · 252, (2)

where n is the window size, rs the log-difference and r̄
is the sample mean of the observations in each rolling
window.
A fundamental challenge in this approach is determin-
ing the optimal window size. Ideally, the window size
should be selected to minimize the volatility of σ̂n,t pro-
viding the best estimate of true volatility. However, a
primary criticism of this method is that it treats all ob-
servations with equal weight, failing to account for the
greater influence that more recent prices have compared
to older data. Consequently, an exponentially weighted
moving average approach may yield more accurate es-
timates by placing more weight on recent observations.
In this study, we estimate stock returns volatility using
the historical rolling volatility approach, acknowledging
both its simplicity and the limitations associated with
the choice of window size.

2.2 EGARCH model

In recent years, much attention has been focused on
modelling financial-market returns by processes other
than simple Gaussian white noise. To capture the
property of time varying volatility, Engle (1982) intro-
duced the AutoRegressive Conditional Heteroskedastic-
ity (ARCH) model. Bollerslev’s (1986) extension of this
model, the Generalised ARCH (GARCH) model is of-
ten used for modelling stochastic volatility in financial
time series. Although GARCH models give adequate
fits for dynamics, these models often fail to perform
well in modelling the volatility of stock returns because
GARCH models assume that there is a symmetric re-
sponse between volatility and returns. Therefore, they
are not able to capture the leverage effect of stock re-
turns. In order to model asymmetric variance effects be-
tween positive and negative asset returns, Nelson (1991)
introduced the Exponential GARCH (EGARCH) model
[17].
Let xt = µ+at be the time series value at time t, where µ
is the mean of the GARCH model and at is the model’s
residual at time t. Additionally, at = σtεt in which σt
is the conditional volatility at time t as

lnσ2
t = α0 +

p∑
i=1

αi(|εt−i|+γiεt−i)+

q∑
j=1

βj lnσ2
t−j . (3)

where p is the order and α0, . . . , αp are the coefficient
parameters of ARCH component and also q is the or-
der and β0, . . . , βq are the coefficient parameters of
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GARCH component. Moreover, {εt} is an iid sequence
of residuals that approximates the measurement error
sequence under the assumption that they are normally
distributed with zero mean and constant variance.

2.3 NARX model

Recent developments in the finance sector have sparked
significant interest in a new class of nonlinear models in-
spired by the structure of the human brain, commonly
referred to as Artificial Neural Networks (ANNs). ANN
techniques have been extensively utilized for forecast-
ing stock prices and historical volatility [6], [7]. In this
study, we propose an innovative approach for model-
ing stock return volatility by leveraging machine learn-
ing and signal processing methodologies, particularly
through the application of the Nonlinear Autoregressive
model with Exogenous Inputs (NARX). The defining
equation for the NARX model is

yt = f(yt−1, yt−2, . . . , yt−n, ut−1, ut−2, . . . , ut−n). (4)

The NARX model employs a learning process similar
to that of other neural network architectures. In the
context of regression, model parameters are estimated
using a training set comprised of input-output samples
that represent the function we aim to approximate. To
ensure that the model generalizes effectively, it is cru-
cial to accurately estimate the function on data not in-
cluded in the training set. In our study, the variable
yt corresponds to historical rolling volatility calculated
over various rolling windows, specifically 20, 120, and
252 days. By selecting different window sizes, we can
capture both short-term and long-term characteristics
of stock return volatility.
In addition, incorporating relevant supplementary infor-
mation can enhance the training set. For example, trad-
ing volumes can provide valuable insights into market
liquidity. Typically, increasing trading volumes are ob-
served during bullish market conditions, where height-
ened enthusiasm among buyers drives prices higher.
Conversely, if prices rise while trading volume declines,
it may indicate a lack of interest, suggesting a potential
reversal in trend. Thus, price movements that occur on
low volume are less significant, while changes on high
volume may signal a fundamental shift in the stock, of-
fering critical information for training the network. In
our analysis, we trained the neural network using 70%
of the available data for each price return series, with
the objective of minimizing the sum of squared errors.
The implementation was conducted using Python.

2.4 LSTM model

To process sequential data, we utilize Long Short-Term
Memory (LSTM) networks, a sophisticated variant of
recurrent neural networks (RNNs). While RNNs are

Figure 1: NARX neural network

inherently designed to manage sequential data, they
often encounter challenges, particularly the vanishing
gradient problem. This issue complicates the learn-
ing of long-term dependencies within the data. LSTMs
present a robust solution to this limitation through the
implementation of a more complex architecture that
governs the flow of both historical memory and new
inputs, effectively addressing the challenges associated
with standard RNNs [11]. LSTMs consist of several
fundamental components known as gates, which employ
activation functions to regulate the flow of information
throughout the network. The primary gates and states
involved in an LSTM layer include,

1. Cell State (also referred to as the memory cell) The
Cell State retains information from previous LSTM
cells, enabling it to capture and remember long-
term relationships in the data. This information is
protected by the Forget Gate and updated by the
Input Gate.

2. Hidden State (also known as the output of the
LSTM cell): The Hidden State reflects the output
from prior LSTM cells and is utilized in conjunc-
tion with the Forget Gate, Input Gate, and Output
Gate to generate a new Hidden State, serving as the
output of the LSTM cell.

3. Forget Gate: This gate regulates how much in-
formation is retained from the Cell State, provid-
ing the model with the ability to discard irrelevant
data.

4. Input Gate: The Input Gate determines the extent
to which new information should be incorporated
into the Cell State.

5. Output Gate: This gate controls the degree of in-
formation from the Cell State that is used to gen-
erate the output of the LSTM cell, also referred to
as the Hidden State.

By integrating these components, LSTMs effectively
learn and remember patterns within sequential data,
making them powerful tools for a range of tasks, includ-
ing time series forecasting, natural language processing,
and various applications in finance and economics. In
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our study, we apply LSTM networks too model the im-
plied volatility of return.

3 Data analysis

In this section, we detail the data sources utilized for
the analysis and the methodologies implemented to
track volatility and evaluate the effectiveness of the
EGARCH, NARX and LSTM models. In Figures 2 and
3 the daily stock index quotes and the corresponding op-
tion implied volatilities are reported. For each index the
volatility clustering effect is confirmed as well as the well
documented leverage effect [4]. This asymmetry high-
lights the non-linear relationship between volatility and
market returns. When the stock prices fall, volatility
typically increase and vice versa.

Figure 2: Sample path of price

Figure 3: Implied volatility

3.1 Methodology

This study utilizes S&P500 option data spanning from
2011 to 2018 to develop and evaluate time series fore-
casting models. The dataset was divided into train-
ing and testing sets, with 70% of the data allocated for
training purposes and the remaining 30% reserved for
testing the models’ predictive capabilities. For the Long
Short-Term Memory (LSTM) model, a multi-layer ar-
chitecture was employed. The model’s input features in-
cluded implied volatility (IV) lags and historical rolling

volatility (HRV). In contrast, the Nonlinear Autoregres-
sive Exogenous (NARX) model was constructed with
23 neurons. The inputs for this model consisted of
IV lags, and trading volume as an exogenous variable.
The inclusion of trading volume was intended to pro-
vide additional market context, potentially enhancing
the model’s understanding of the underlying dynam-
ics and improving its predictive performance. Both the
LSTM and NARX models were trained using appropri-
ate loss functions and optimization techniques [12] to
ensure accurate forecasting of the S&P500 options ATM
with 30 days expiry during the testing phase. Figure 5
illustrates the fitted NARX model’s performance in fore-
casting implied volatility, showcasing both the training
set and test set results. The model successfully cap-
tures the underlying trends and fluctuations in implied
volatility across the time series, demonstrating its ef-
fectiveness in nonlinear prediction. Moreover, Figure 6
depicts the performance of the LSTM in forecasting im-
plied volatility and shows the fitted values on the train-
ing ant test set, illustrating the model’s capability to
capture complex patterns and temporal dependencies
in the volatility data. The training and evaluation of
the models were conducted using established machine
learning libraries and frameworks.

3.2 Performance evaluation

To evaluate the performance of the EGARCH, NARX
and LSTM models, we employed several statistical met-
rics that are commonly used for assessing forecasting
accuracy. The selected metrics include Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Root
Mean Squared Error (RMSE). These metrics provide a
comprehensive understanding of model performance by
quantifying the errors in the predictions relative to the
actual observed values.

Figure 4: Tracking implied volatility using the
EGARCH model

The MAE measures the average absolute differ-
ences between predicted and actual values, providing
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Figure 5: Tracking implied volatility using the NARX
model

Figure 6: Tracking implied volatility using the LSTM
model

a straightforward interpretation of error magnitude as

MAE =
1

n

n∑
t=1

|Yt − Ŷt| (5)

where Yt is the observed implied volatility (actual value)
and Ŷt is the estimated volatility (predicted value) by
the models. As another error measure, we present MSE
that squares these differences before averaging. That
means, it penalizes larger errors more heavily, making
it useful for assessing model performance when outliers
are present.

MSE =
1

n

n∑
t=1

(Yt − Ŷt)2, (6)

and RMSE is simply the square root of MSE as
RMSE =

√
MSE, offering the error metric in the same

units as the original data, thus making it more inter-
pretable.
Our empirical analysis provides clear evidence that the
LSTM model outperforms the EGARCH and NARX
models in tracking the implied volatility of the S&P500
index. As presented in Table 1, the LSTM model
achieved lower error metrics across all measures.

These results highlight the LSTM model’s superior
ability to capture the complex temporal dependencies
and nonlinear patterns inherent in financial time series
data, more effectively than the NARX model. The lower

RMSE MSE MAE
EGARCH 1.491 2.223 1.440

NARX 0.018 0.033 0.012
LSTM 0.007 0.005 0.005

Table 1: Comparison of error measures for EGARCH,
NARX and LSTM models in forecasting implied volatil-
ity

error rates indicate that the LSTM network provides a
more accurate and reliable tool for forecasting implied
volatility, which is crucial for making informed decisions
in financial markets.
The implications of these findings are significant for
practitioners and researchers in finance. By adopting
advanced deep learning techniques like LSTM networks,
market participants can enhance their volatility fore-
casting capabilities, leading to improved risk manage-
ment and more strategic investment decisions. This
study highlights the potential of leveraging cutting-edge
neural network architectures to gain a competitive edge
in the dynamic landscape of financial markets.

4 conclusion

In conclusion, this study has highlighted the effective-
ness of the LSTM model in comparison to the EGARCH
and NARX models for time series forecasting tasks.
The performance metrics obtained demonstrate that
the LSTM model outperforms the other models across
all evaluated criteria. These findings indicate that the
LSTM model’s architectural advantages, particularly
its ability to effectively capture temporal dependencies,
contribute to its superior predictive accuracy. This
research shows the significance of model selection in
time series analysis and suggests that deep learning ap-
proaches, such as LSTM, can enhance forecasting ca-
pabilities. Future studies may explore integrating addi-
tional variables and testing alternative models to further
improve predictive performance and expand the under-
standing of time series dynamics.
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